REMEDIAL ACTION WORK PLAN

FORMER CARR CHINA MANUFACTURING FACILITY GRAFTON, TAYLOR COUNTY, WEST VIRGINIA VRP PROJECT #20019

Prepared For:

SAVE THE TYGART WATERSHED ASSOCIATION, INC. P.O. BOX 164 GRAFTON, WEST VIRGINIA 26354

Prepared By:

LICENSED REMEDIATION SPECIALIST: ELIZABETH A. STAS (LRS NO. 296) Civil & Environmental Consultants, Inc. 4350 Northern Pike, Suite 141 Monroeville, Pennsylvania 15146 Phone: (724) 327-5200 Fax: (724) 327-5280 Email: estas@cecinc.com

CEC Project 194-569

August 18, 2022 Revised October 11, 2022

Civil & Environmental Consultants, Inc.

TABLE OF CONTENTS

1.0	Introduction1				
	1.1	Voluntary Remediation Program Process to Date1			
	1.2	Site Description and Intended Use			
	1.3	Site Operational and Remediation History			
2.0	Site Assessment Summary				
	2.1	Groundwater Migration to Surface Water			
	2.2	Ecological De Minimis Screening Evaluation			
3.0	Risk Assessment Summary8				
	3.1	Identification of Contaminants of Concern			
	3.2	Quantitative Risk Calculations			
	3.3	Final Exposure Pathways Requiring Remediation12			
4.0	Remediation Standards				
	4.1	Human Health Standards14			
	4.2	Ecological Standards15			
5.0	Remedial Alternatives Evaluation				
	5.1	Institutional Controls16			
	5.2	Soil Cover17			
	5.3	Monitored Natural Attenuation19			
	5.4	Uncertainty and Risk23			
6.0	Statement of Work to Accomplish Remediation25				
	6.1	Institutional Controls			
		6.1.1 Potable Use of Groundwater			
		6.1.2 Residential Land Use			
		6.1.3 Excavation at the Site			
	6.2	Soil Cover			
	6.3	Natural Attenuation Monitoring and Reporting			
	6.4	LUC Annual Inspections and Reporting			
	6.5	Implementation Schedule			
7.0	References				

TABLES

- Table 2 Subsurface Soil Analytical Results
- Table 3 Groundwater Analytical Results
- Table 4 Summary of XRF Results Remediation Areas

Table of Contents (Continued) Page ii

FIGURES

Figure 1 – Site Location Map Figure 2 – Site Layout Figure 3 – Proposed Soil Cover Areas

Figure 4 – Groundwater Elevation Contour Map

APPENDICES

Appendix A – USEPA Remediation Photographs

Appendix B - DRAFT Land Use Covenant

Appendix C – Post-Mitigation Risk Calculations

Appendix D – WVDEP Cap and Cover Guidance

LIST OF ACRONYMS AND ABBREVIATIONS

bgs - below ground surface

CEC – Civil & Environmental Consultants, Inc.

COC - Contaminants of Concern

CORE – CORE Environmental

DAF – Dilution Attenuation Factor

ELCR – Estimated Lifetime Cancer Risk

ESA – Environmental Site Assessment

EPC – Exposure Point Concentration

HI – Hazard Index

LUC – Land Use Covenant

mg/Kg – milligrams per kilograms

MNA – Monitored Natural Attenuation

PAHs – Polycyclic Aromatic Hydrocarbons

QA/QC - Quality Assurance/Quality Control

RAR - Risk Assessment Report

RAWP - Remedial Action Work Plan

SAR – Site Assessment Report

SAWP – Sampling and Analysis Work Plan

Site – Former Carr China Manufacturing Facility

STTWA – Save the Tygart Watershed Association

SVOC – Semi-Volatile Organic Compound

TAL – Target Analyte List

USEPA – United States Environmental Protection Agency

VOC - Volatile Organic Compound

VRA - Voluntary Remediation Agreement

VRP - Voluntary Remediation Program

Table of Contents (Continued) Page iii

VRRR – Voluntary Remediation & Redevelopment Rule WVDEP – West Virginia Department of Environmental Protection XRF – X-Ray Fluorescence Instrument

1.0 INTRODUCTION

Civil & Environmental Consultants, Inc. (CEC) has prepared this Remedial Action Work Plan (RAWP) for the Former Carr China Manufacturing Facility located at 230 Newcome Avenue, Grafton, Taylor County, West Virginia (Site). This RAWP was prepared on behalf of the Save the Tygart Watershed Association, Inc. (STTWA), who was awarded a \$240,000 Brownfields Cleanup Grant from the United States Environmental Protection Agency (USEPA) on September 17, 2019 (Grant #96371501).

This RAWP has been prepared to address potential unacceptable risks related to soil and groundater and to satisfy the RAWP requirements of the Voluntary Remediation and Redevelopment Rule (VRRR) Title 60, Series 3. The Site location is shown on Figure 1, and the layout of the Site is shown on Figure 2.

1.1 VOLUNTARY REMEDIATION PROGRAM PROCESS TO DATE

The STTWA filed an application to enter the Site into the West Virginia Voluntary Remediation Program (VRP) on May 29, 2020. The West Virginia Department of Environmental Protection (WVDEP) accepted the application on June 12, 2020. The STTWA and WVDEP entered into a Voluntary Remediation Agreement under the VRP on August 5, 2020. The Site has been assigned VRP Project #20019.

Previous investigations, including a Phase I Environmental Site Assessment (ESA) conducted in 2018 and a Phase II ESA conducted in 2019, were conducted at the Site prior to entry into the VRP. Accordingly, a supplemental Site Assessment Work Plan (SAWP) was prepared under the VRP to address data gaps identified for the Site. WVDEP approved the Supplemental SAWP via letter dated August 31, 2020. Supplemental site investigation activities were conducted in September/October 2020, and a Site Assessment Report (SAR) was submitted to WVDEP on December 10, 2020. WVDEP provided comments on the SAR via letter dated January 7, 2021, and a revised SAR addressing these comments was prepared and submitted on January 19, 2021. WVDEP approved the revised SAR via letter dated January 25, 2021. Based on recommendations in the approved SAR, a Human Health and Ecological Risk Assessment Report (RAR) was prepared to evaluate potential human health risks associated with Contaminants of Concern (COCs) identified in site soils, groundwater, and offsite sediment under current and future land use scenarios. The RAR was submitted to WVDEP on March 16, 2021. WVDEP provided comments on the RAR via letter dated April 14, 2021, and a revised RAR addressing these comments was prepared and submitted on April 28, 2021. WVDEP approved the revised RAR via letter dated May 3, 2021.

In addition to the report approvals described above, STTWA, WVDEP, and CEC have participated in two (2) conference calls to develop the strategy and approach for moving forward through the VRP for the Site. The first call was on March 4, 2021 in which the strategy for monitored natural attenuation was discussed and agreed upon. This conversation is described in more detail in Section 6.3. The second was on April 7, 2022 in which the approach for delineating the proposed soil cover areas was discussed. This conversation is described in more detail in Section 6.2.

1.2 SITE DESCRIPTION AND INTENDED USE

The Former Carr China Manufacturing Facility is located at 230 Newcome Avenue, in Grafton, Taylor County, West Virginia. A Site Location Map is provided as Figure 1. The Site consists of four (4) adjacent tax parcels covering approximately 7.39 acres and situated along the south bank of the Tygart Valley River (i.e., Tax Parcel IDs 07-7-81, 07-7-82, 07-7-83, and 07-7-84). The Site is located approximately 0.6-mile downstream of the Tygart Lake and Tygart River Dam. The Tygart Lake is the location of a surface water intake for the Taylor County Public Service District drinking water. Access to the largest parcel (i.e., 07-7-82) is currently restricted via a chain-link fence; however, other areas of the Site, including the riverbank and western wooded areas, are readily accessible by pedestrians. Surrounding land use includes residential properties to the east, a former railroad bed, then residential properties to the south, a Taylor County Public Service District District wastewater pump station to the west, and the Tygart Valley River to the north. A Site Layout Map showing the Site and parcel boundaries is provided as Figure 2.

1.3 SITE OPERATIONAL AND REMEDIATION HISTORY

The Site was the location of the Carr China Manufacturing facility and was used for the production of hotel/restaurant dinnerware from 1916 through 1952. Throughout this period of operation, contamination occurred from chemicals used to glaze and manufacture china, as well as from discarded damaged china throughout the property. Specifically, lead compounds were used in the china glazing process and various metal salts were used as coloring agents. Off-spec and damaged china containing these heavy metals was discarded on the property surrounding the manufacturing building, down the riverbank, and into the adjacent Tygart Valley River. The facility has remained vacant since the china manufacturing operations ceased in 1952. A fire occurred at the site in 1966, which burned the majority of the Site's infrastructure to the ground leaving debris and rubble strewn about the Site.

From 2008 through 2010, USEPA conducted a removal action including the removal and disposal of 12,000 tons of soil/china debris and removal of most of the facility's remaining infrastructure. As part of this removal action, soil caps were installed in two (2) areas of the Site. One (1) of these areas included the eastern parcel of the Site where approximately 18 inches of lead contaminated soil in excess of 1,000 mg/Kg was excavated. In August 2010, an x-ray fluorescence instrument (XRF) was used to screen the base of the excavated areas in the eastern portion of the Site. Specifically, 30 locations were screened based on an approximate 25-foot grid. Of the 30 locations, lead was determined to be in excess of 1,000 mg/kg in 21 of the locations. Ten (10) of the 30 screened locations contained lead in excess of 2,000 mg/kg up to a maximum of 4,215 mg/kg. Accordingly, geotextile fabric was placed across the excavated area, and the area was backfilled with 2 feet of clean soil. The approximate aerial extent of this soil capped area is shown on Figure 3. The second capped area includes the eastern bank of the unnamed tributary and the southern bank of the Tygart Valley River. Significant amounts of china debris were found along these banks, estimated at a thickness of greater than 16 feet in some areas. These entire banks were excavated at varying depths ranging from 2 to 6 feet, then the entire area was re-graded and sloped to enable stabilization by compacting the debris. Restoration of the riverbanks was completed by compacting the china debris, covering the debris with geotextile fabric, backfilled, jute matting, and then seeding the areas. The approximate aerial extent of the soil capped area is

shown on Figure 3. Finally, two (2) areas were identified on the main parcel of the Site where USEPA encapsulated china debris in concrete. These areas are depicted on Figure 3. Photographs from the USEPA remediation are provided in Appendix A.

2.0 SITE ASSESSMENT SUMMARY

The investigation of the Site included sampling and analysis of surface and subsurface soil, groundwater, and sediment to evaluate the potential for releases of hazardous constituents to the environment. Investigation activities were conducted as part of a 2019 Phase II ESA conducted by CORE Environmental (CORE), and a supplemental investigation conducted by CEC in September 2020.

The 2019 CORE Phase II included the following assessment activities:

- Screening surface soil at 133 locations across the Site using an XRF;
- Advancing 27 direct-push soil borings and 11 hand auger soil borings at locations determined based on the results of the XRF screening, in the proximity of the former AST locations, and along the southern property boundary in proximity to the former railroad;
- Collecting 38 surface soil samples [plus four (4) duplicates] and 27 subsurface soil samples [plus four (4) duplicates] for analysis of Volatile Organic Compounds (VOCs) (Method 8260B), Semi-Volatile Organic Compounds (SVOCs) (Method 8270D SIM), Target Analyze List (TAL) metals (Method 6010C), and mercury (Method 7471B);
- Installing 11 temporary groundwater monitoring wells (TW-1 through TW-11) to a depth of approximately 20 feet, and collecting one (1) round of groundwater samples for analysis of VOCs (Method 8260B), SVOCs (Method 8270D SIM), TAL metals (Method 6010C/6020B), and mercury (Method 7470A); and
- Installing six (6) permanent groundwater monitoring wells (MW-1 through MW-6) to depths ranging from 15 to 20 feet below ground surface (bgs), and collecting one (1) round of groundwater samples for analysis of TAL metals (Method 6010C/6020B) and mercury (Method 7470A).

The 2020 CEC supplemental investigation included the following assessment activities:

- Collecting a second round of groundwater samples from the six (6) permanent groundwater monitoring wells (MW-1 through MW-6) plus one (1) duplicate and Quality Assurance/Quality Control (QA/QC) samples on September 1, 2020 for analysis of polycyclic aromatic hydrocarbons (PAHs) [Method 8270E Low Level (LL)] and dissolved TAL metals and mercury (Methods 6020B and 7470A).
- Collecting six (6) sediment samples [plus one (1) duplicate sample and QA/QC samples] for analysis of PAHs at locations SD-04 and SD-05 only (Method 8270E LL) and TAL metals (Methods 6020B and 7471A).

A detailed description of the Site assessment, including sampling locations, sample analyses, and analytical results, was presented in the approved SAR, dated January 19, 2021 (CEC, 2021a). Based on the results of the Site assessment, a Human Health and Ecological RAR was prepared as discussed in Section 3.0.

2.1 GROUNDWATER MIGRATION TO SURFACE WATER

A detailed evaluation of the potential groundwater migration to surface water was presented in Section 2.5 of the approved SAR (CEC, 2021a). Specifically, in order to evaluate groundwater migration to the surface water of the Tygart Valley River, dilution attenuation factors (DAFs) specific to human health and to ecological receptors were calculated in accordance with Appendix B, Section B.2.1 and B.2.2, respectively, of the revised WVDEP Technical Guidance Manual (June 2020).

Based on the DAF-adjusted screening evaluation, none of the detected concentrations in groundwater exceed either a human health or ecological WQS. Therefore, the groundwater migration to surface water pathway was demonstrated to be an incomplete pathway for the Site for both human and ecological receptors.

2.2 ECOLOGICAL DE MINIMIS SCREENING EVALUATION

A De Minimis ecological screening evaluation was presented in Section 8.0 of the approved SAR (CEC, 2021a). Specifically, WVDEP provides a "Checklist to Determine Applicable Remediation Standards, Part 1: Ecological Standards" to aid in completion of the ecological screening. Based on the responses in the completed checklist, Site constituents do not pose a significant ecological risk, and no further ecological evaluation was warranted. Therefore, no further evaluation of ecological receptors was conducted as part of the Human Health and Ecological RAR.

3.0 RISK ASSESSMENT SUMMARY

Using the data generated throughout the Site assessment activities discussed in Section 2.0, a Human Health and Ecological RAR was prepared and submitted to WVDEP on March 16, 2021. In response to WVDEP comments, a revised RAR was prepared and submitted to WVDEP on April 28, 2021 and subsequently approved via letter dated May 3, 2021. The following sections provide a summary of the approved RAR.

3.1 IDENTIFICATION OF CONTAMINANTS OF CONCERN

Section 2 of the approved RAR included a data evaluation to identify a media-specific list of contaminants of concern (COC) that would be retained for further evaluation in the assessment. Specifically, 1) detected constituent concentrations in on-site soil were compared to the residential and industrial VRP De Minimis Standards for direct contact with soil or West Virginia 90th percentile background values (if higher); 2) detected constituents in groundwater were compared to the groundwater VRP De Minimis Standards; 3) detected constituents in sediment were compared to the WVDEP residential VRP De Minimis Standards for direct contact with soil or West Virginia 90th percentile background values (if higher); 4) detected constituent concentrations in groundwater were compared to the USEPA residential Vapor Intrusion Screening Levels; and 5) detected constituent concentrations in groundwater were compared to the Tygart River (see previous discussion in Section 2.1). Based on this screening evaluation, the following COCs were identified for further evaluation in the risk assessment:

- Surface Soil Direct Contact (Residential): arsenic, lead, mercury, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene;
- Surface Soil Direct Contact (Industrial): lead and mercury;

- Subsurface Soil Direct Contact (Residential): lead, mercury, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene;
- Subsurface Soil Direct Contact (Industrial): lead and mercury;
- **Groundwater Direct Contact:** benzo(b)fluoranthene, indeno(1,2,3-cd)pyrene, cobalt, lead, manganese, and vanadium;
- Groundwater Vapor Intrusion (Residential): none;
- Groundwater Migration to Surface Water (Human Health): none;
- Groundwater Migration to Surface Water (Ecological): none; and
- Sediment Direct Contact: benzo(a)pyrene.

These COCs were carried through to the quantitative risk calculations. The De Minimis standards were updated in December 2021, after approval of the Human Health and Ecological RAR. Accordingly, the site analytical results for soil and groundwater were re-screened using the 12/2/2021 De Minimis Values. This updated screening is presented in Table 1 for surface soil, Table 2 for subsurface soil, and Table 3 for groundwater. Based on the updated screening, the following revised list of COC are identified for soil and groundwater at the Site:

- Surface Soil Direct Contact (Residential): arsenic, lead, manganese, mercury, and benzo(a)pyrene;
- Surface Soil Direct Contact (Industrial): lead and mercury;
- Subsurface Soil Direct Contact (Residential): lead, mercury, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene;
- Subsurface Soil Direct Contact (Industrial): lead and mercury; and
- Groundwater Direct Contact: benzo(b)fluoranthene, cobalt, lead, and manganese.

This revised list of COC does not impact the results of the risk assessment.

3.2 QUANTITATIVE RISK CALCULATIONS

The RAR included a quantitative evaluation of a future outdoor maintenance worker (commercial) potentially exposed to surface soil and sediment, a future construction worker potentially exposed to shallow soil from 0 to 10 feet bgs, a future adult recreational receptor potentially exposed to soil and sediment, and a future child recreational receptor potentially exposed to soil and sediment. Potential pathways associated with residential use of the Site and the use of Site groundwater were excluded from the quantitative risk evaluation since a Land Use Covenant (LUC) will be implemented for the Facility that prohibits residential use and future use of groundwater. Additionally, potential vapor intrusion and migration to surface water pathways were excluded based on the results of the screening evaluation in which no COCs were identified.

The results of the quantitative risk assessment are summarized as follows:

- For a future outdoor maintenance worker potentially exposed to surface soil and sediment, the noncancer HI is $7x10^{-2}$, which is below the WVDEP benchmark of 1 and the potential ELCR is $6x10^{-8}$, which is below the WVDEP benchmark of $1x10^{-5}$;
- For a future construction worker potentially exposed to shallow soil from 0 to 10 feet bgs, the noncancer HI is $4x10^{-1}$, which is below the WVDEP benchmark of 1 and the potential ELCR is $5x10^{-8}$, which is below the WVDEP benchmark of $1x10^{-5}$;
- For a lifetime recreator exposed to surface soil (i.e., the sum of the individual age range calculations from 0 up to 26 years), the noncancer HI is 9 x 10⁻¹, which is below the WVDEP benchmark of 1 and the potential ELCR is 2 x 10⁻⁶, which slightly exceeds the WVDEP benchmark of 1 x 10⁻⁶. This result is driven by incidental ingestion of benzo(a)pyrene in surface soil; and
- For a lifetime recreator exposed to sediment (i.e., the sum of the individual age range calculations from 0 up to 26 years), the noncancer HI is 6 x 10⁻⁴, which is below the WVDEP benchmark of 1 and the potential ELCR is 4x10⁻⁸, which is below the WVDEP benchmark of 1x10⁻⁶.

Based on the results presented above, unacceptable risks were identified for a lifetime recreational receptor potentially exposed to benzo(a)pyrene in surface soil. Mitigation of surface soil samples SS-2-CORE and SS-3-CORE would be sufficient to reduce these potential risks to acceptable levels.

It is emphasized that the risk scenario evaluated assumed Site-wide use (i.e., data across the entire Site were combined to calculate EPCs). However, the Site characterization identified the following locations in surface and shallow subsurface soil where concentrations of lead or mercury exceeded the industrial De Minimis Values:

Sample Location	Lead Concentration ⁽¹⁾ (mg/Kg)
SS-3-CORE (0-2 feet)	1250
SS-14-CORE (0-4 feet)	1410
SB-14-CORE (4-6 feet)	1030

(1) Lead concentration exceeds the industrial De Minimis value of 800 mg/Kg.

Sample Location	Mercury Concentration ⁽¹⁾ (mg/Kg)
SS-4-CORE (0-2 feet)	40.3
SB-4-CORE (4-6 feet)	5.38

(1) Mercury concentration exceeds the Industrial De Minimis value of 3.1 mg/Kg.

These locations are considered potential "hotspots" that would require further risk evaluation or mitigation such as capping or removal if future use of the Site included the potential for receptors to spend concentrated time in these areas. Since the future site redevelopment includes recreational use and it is not feasible to estimate or determine where recreators may spend their time at the Site, capping and/or removal of these locations is recommended in conjunction with the site redevelopment plans to minimize the potential for future unacceptable exposure.

Finally, the RAR included a risk evaluation of a construction worker conducting a localized construction project wholly in the vicinity of the hot spots identified above with the following results:

- For a construction worker potentially exposed to a lead concentration of 1,410 mg/Kg at surface soil sample location SS-14-CORE over a 15-day construction project (assumes a lead hot spot area of approximately 100 feet by 100 feet as delineated by the 2019 XRF investigation), the potential adult blood lead 95th percentile concentration is 3.99 ug/dL, which is below the WVDEP acceptable benchmark of 5 ug/dL;
- For a construction worker potentially exposed to a lead concentration of 1,250 mg/Kg at surface soil sample location SS-3-CORE over a 15-day construction project (assumes a lead hot spot area of approximately 100 feet by 100 feet as delineated by the 2019 XRF investigation), the potential adult blood lead 95th percentile concentration is 3.72 ug/dL, which is below the WVDEP acceptable benchmark of 5 ug/dL; and
- For a construction worker potentially exposed to a mercury concentration of 40.3 mg/Kg at surface soil sample location SS-4-CORE over a five (5)-day construction project (assumes a mercury hot spot area of approximately 5,000 square feet as delineated by the 2019 XRF investigation), the noncancer HI is $5x10^{-1}$, which is below the WVDEP benchmark of 1 and the potential ELCR is $4x10^{-8}$, which is below the WVDEP benchmark of $1x10^{-5}$.

Accordingly, no mitigation measures are warranted for construction workers potentially exposed to hot spots during a focused construction project.

3.3 FINAL EXPOSURE PATHWAYS REQUIRING REMEDIATION

Based on the results of the approved RAR, the following exposure scenarios require additional measures to prevent, reduce, or eliminate potential future unacceptable exposure:

Residential Use of the Site: As presented in Tables 1 and 2, arsenic, lead, manganese, mercury, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene were detected in soil at concentrations that exceed the residential soil De Minimis Standards, indicating the potential for unacceptable human health risk under a hypothetical future residential Site use scenario. Therefore, a LUC will be required that prevents future residential use of the entire Site;

- **Potable use of Groundwater:** As presented in Table 3, benzo(b)fluoranthene, cobalt, lead, and manganese were detected in Site groundwater at concentrations that exceed the Groundwater De Minimis Values. Therefore, a Land Use Covenant (LUC) will be required to prevent future use of groundwater;
- Recreational Use of the Site: The ELCR for a lifetime recreational receptor associated with exposure to surface soil at the Site is 2 x 10⁻⁶, which slightly exceeds the Site's acceptable risk benchmark of 1 x 10-6 driven by incidental ingestion of benzo(a)pyrene. Mitigation of surface soil samples SS-2-CORE and SS-3-CORE would be sufficient to reduce these potential risks to acceptable levels. Additionally, as described above, several hot spot locations were identified where concentrations of lead or mercury exceed the industrial De Minimis Values. Specifically, lead at sample locations SS-3-CORE (0-2 feet), SS-14-CORE (0-4 feet), and SB-14-CORE (4-6 feet) and mercury at locations SS-4-CORE (0-2 feet) and SB-4-CORE (4-6 feet). Accordingly, these locations will require remediation to prevent potential unacceptable exposure for future recreational users of the Site. As described later in this report, the proposed remediation is installation of a soil cover over these locations.
- Excavation at the Site: The risk assessment did not identify potential unacceptable exposure to future construction workers conducting excavation projects at the Site. However, as part of the previous remedial action conducted by USEPA from 2008 through 2010, there were several areas across the Site where lead-impacted china debris was capped or encapsulated (refer to discussion in Section 1.3). Figure 3 shows the approximate extent of these areas, although the exact limits of buried china debris are not known. Therefore, an institutional control mandating that specific health and safety procedures be followed to prevent potential exposure during excavation at the Site will be required Site-wide.

Additionally, groundwater will also require a remedy, such as monitored natural attenuation (MNA), to address constituents detected in on-site groundwater at concentrations that exceed the West Virginia De Minimis values under the Groundwater Protection Act.

4.0 **REMEDIATION STANDARDS**

4.1 HUMAN HEALTH STANDARDS

The table below provides a summary of the remediation measures that will be implemented for the Site to meet the VRP Site-Specific Standard for human health.

Media	Potential Receptor	Remediation Measure to Attain Site-Specific Human Health Standard
Surface and Subsurface Soil	Future Resident	Administrative Control - LUC that prohibits residential use of the property.
Surface Soil	Future Adult and Child Recreator	Remediation required for future recreational use of the Site including covering lead and mercury hot spots and sample locations driving unacceptable risks.
Surface Soil	Future Outdoor (Maintenance) Worker	Calculated risks are below WVDEP's acceptable benchmarks. No remediation required.
Surface and Subsurface Soil	Construction Worker	Administrative Control – LUC that requires health and safety protocols be implemented to minimize exposure to china debris during excavation or earth disturbance activities.
Indoor Air	Indoor Worker	The vapor intrusion to indoor air pathway is incomplete for the Site. No remediation required.
On-Site Groundwater	On-Site Potable Groundwater Users	Administrative Control - LUC that prohibits groundwater use at the property. Additionally, MNA is required under the Groundwater Protection Act to ensure that concentrations of COCs in Site groundwater are declining/stable.
Groundwater Migration to Surface Water	Recreational Receptors	The groundwater migration to surface water pathway is incomplete for the Site. No remediation required.
Sediment	Recreational Receptors	Calculated risks are below WVDEP's acceptable benchmarks. No remediation required.

4.2 ECOLOGICAL STANDARDS

The De Minimis Ecological Standard is met for the Site as based on the De Minimis Ecological Screening Evaluation discussed in Section 2.2.

5.0 REMEDIAL ALTERNATIVES EVALUATION

In accordance with Section 9.8.a of the VRRR, the selected remedy should be evaluated using the following criteria:

- The effectiveness of the remedy in protecting human health and the environment;
- The reliability of the remedial action in achieving the standards over the long-term;
- Short-term risks to the affected community, those engaged in the remedial action effort, and to the environment posed by the implementation of the remedial action;
- The acceptability of the remedial action to the affected community;
- The implementability and technical practicability of the remedial action from an engineering perspective;
- Meets protectiveness goals at lowest cost; and
- Considers net environmental benefits of the remedial action.

Each criterion is discussed below for the proposed remedy of institutional controls (Section 5.1) and soil cover (Section 5.2).

5.1 INSTITUTIONAL CONTROLS

Effectiveness

The proposed remedy of institutional controls will minimize the potential for future unacceptable exposures for identified receptors. Therefore, this remedy is effective in protecting human health and the environment.

Long-Term Reliability

The long-term effectiveness of the institutional controls will require continued monitoring to ensure that restrictions remain in place. Accordingly, annual monitoring to ensure long-term effectiveness will be required as part of the LUC.

Civil & Environmental Consultants, Inc.

Short-Term Risks

Since the proposed remedy of institutional controls does not involve active remediation or Site disturbance, there are no obvious short-term risks to the affected community.

Acceptability

Although the local community has not been significantly involved with the VRP program at the Site to date, they would likely approve of the proposed remedy because the abandoned property will be put back into productive use.

Implementability

The institutional controls are relatively easy to implement, although will require annual inspections and reporting to WVDEP.

<u>Cost</u>

The proposed remedy was selected as a cost-effective approach for addressing potential risks associated with the Site relative to other remedial options.

Net Environmental Benefits

The net environmental benefits include reducing unacceptable risks.

5.2 SOIL COVER

Surface soil sample locations driving unacceptable risks for future recreational receptors, and related hot spots will be mitigated via installation of a soil cover over these locations.

Effectiveness

The proposed remedy of placing a soil cover over identified lead and mercury hot spots and sample locations driving unacceptable risks will minimize the potential for future unacceptable exposures for identified receptors. Therefore, this remedy is effective in protecting human health and the environment.

Long-Term Reliability

The long-term effectiveness of the proposed remedy will require ongoing monitoring to ensure that the soil cover remains in place and restricts direct contact with underlying soil. Accordingly, annual inspection of the soil cover to ensure long-term effectiveness will be required as part of the LUC.

<u>Short-Term Risks</u>

The short term risks associated with placing the soil cover are small. During implementation, workers will wear personal protective equipment to prevent direct contact with soils and the ground surface will be wetted prior to and during excavation to minimize the potential for airborne dust and associated inhalation risks to workers and surrounding residents.

Acceptability

Although the local community has not been significantly involved with the VRP program at the Site to date, they would likely approve of the proposed remedy because the abandoned property will be put back into productive use.

Implementability

The soil cover installation will be relatively easy to implement, given that the Site is currently vacant and undeveloped and given that there are no issues with heavy equipment accessing the

Site and the remediation area. Annual inspections and reporting to WVDEP will also be easy to implement.

<u>Cost</u>

The proposed remedy was selected as a cost-effective approach for addressing potential risks associated with the Site relative to other remedial options.

Net Environmental Benefits

The net environmental benefits include reducing unacceptable risks.

5.3 MONITORED NATURAL ATTENUATION

In accordance with Section 9.9 of the VRRR, the applicability of MNA as an element of the remedy should be evaluated using the following criteria:

- The COCs have the capacity to degrade or attenuate under Site-specific conditions;
- The contaminant plume in groundwater or soil volume is not increasing in size;
- All sources of contamination and free product have been controlled or removed, where practicable;
- The time and direction of contaminant travel can be predicted with reasonable certainty;
- The contaminant migration will not result in the violation of applicable groundwater standards at any existing or reasonably foreseeable receptor;
- If contaminants have migrated onto adjacent properties, the owner must demonstrate that such properties are served by a public water supply or that such properties have consented in writing to allow contaminant migration onto their property;
- A groundwater discharge to a surface water body will not result in contaminant concentrations at the sediment/water interface that result in violations to the surface water standards;

- A groundwater monitoring program will be in place to sufficiently track contaminant degradation and attenuation within and downgradient of the plume and to detect contaminant and contaminant byproducts prior to their reaching any existing or foreseeable receptor;
- All necessary access agreements needed to monitor groundwater quality have been or can be obtained; and
- The proposed corrective action plan would be consistent with all other environmental laws.

Each of these criterion is discussed below for the proposed MNA remedy.

Capacity to Degrade or Attenuate

COCs in groundwater include benzo(b)fluoranthene, cobalt, lead, and manganese. Benzo(b)fluoranthene is an organic constituent that is subject to biological degradation, abiotic degradation, sorption, dispersion, and volatilization. Cobalt, lead, and manganese are metals that are subject to sorption and dispersion.

Sources of Contamination Controlled

Of the six (6) on-site monitoring wells, only MW-3 had concentrations of benzo(b)fluoranthene that exceeded the groundwater De Minimis Values. Potential sources of benzo(b)fluoranthene include historic operations and a fire that occurred at the Site in 1966, which burned the majority of the Site's infrastructure to the ground leaving debris and rubble strewn about the Site. However, given the low concentrations that have been detected, the source is not believed to be significant.

Cobalt and lead are likely associated with the former glazing operations and discarded damaged china that was strewn across the property. Specifically, lead compounds were used in the china glazing process and various metal salts were used as coloring agents. As described in Section 1.3, from 2008 through 2010, USEPA conducted a removal action including the removal and disposal of 12,000 tons of soil/china debris and removal of most of the facility's remaining infrastructure.

Additionally, USEPA capped any remaining areas of china debris that were left onsite. Therefore, potential sources of lead and cobalt contamination in groundwater have been controlled.

No specific sources of manganese were identified during the Site investigation. Manganese concentrations are likely related to regional background and associated with mining operations in the area.

The groundwater analytical results are presented in Table 3 along with a comparison to the current De Minimis values.

Contaminant Plume is Stable

Groundwater analytical results for the identified COC are discussed below:

- **PAHs**: Only one (1) round of sampling was conducted for PAHs as part of the Site characterization. Of the six (6) on-site monitoring wells, benzo(b)fluoranthene was only detected in MW-3 during this event. Additional monitoring is proposed as described in Section 6.3 to determine whether a PAH plume actually exists at the Site and if so, its overall stability.
- **Cobalt** was detected in each of the six (6) on-site monitoring wells, however, only exceeds the De Minimis value in wells MW-4, MW-5, and MW-6 suggesting the cobalt plume is limited to the upgradient and eastern portions of the Site. Cobalt detections in downgrading wells MW-1, MW-2, and MW-3 did not exceed the De Minimis value. Additional monitoring is proposed as described in Section 6.3 to determine plume stability.
- Lead was detected in each of the six (6) on-site monitoring wells with the exception of MW-4. Of these detections, only the second round of sampling at MW-1 exceeded the De Minimis value. Additional monitoring is proposed as described in Section 6.3 to determine whether a lead plume actually exists at the Site and if so, its overall stability.
- Manganese was detected in each of the six (6) monitoring wells across the site during both sampling events and exceeds the De Minimis value in wells MW-2, MW-4, MW-5

and MW-6. On-site sources of manganese are unknown. Manganese concentrations could be related to regional background and associated with mining operations in the area. Additional monitoring is proposed as described in Section 6.3 to determine whether a manganese plume actually exists at the Site and if so, its overall stability.

Predictable Time/Direction of Contaminant Migration

Groundwater at the Site flows to the north toward the Tygart Valley River, which is a principal tributary of the Monongahela River. The surface water flow rate in the Tygart Valley River in the vicinity of the Site is controlled by the release of water from Tygart Lake within Tygart Lake State Park located approximately 0.6-mile upstream of the Site. Depth to water measurements collected from the six (6) on-site monitoring wells (MW-1 through MW-6) on September 1, 2020 were used to prepare the groundwater elevation contour map included as Figure 4.

No Violation of Applicable Standards

Groundwater at the Site is not currently used as a potable water source and future use will be prohibited via a LUC. As described above, groundwater at the Site flows toward the Tygart Valley River, which is immediately adjacent to the Site to the north. Accordingly, existing and reasonably foreseeable receptors that could be potentially exposed to Site groundwater are limited to surface water receptors. Potential impacts to surface water are discussed below.

Migration onto Adjacent Property

The Site is bordered to the north by the Tygart Valley River. Accordingly, existing and reasonably foreseeable receptors that could be potentially exposed to Site groundwater are limited to surface water receptors. Potential impacts to surface water are discussed below.

Impacts to Surface Water

A detailed evaluation of the potential groundwater migration to surface water was presented in Section 2.5 of the approved SAR (CEC, 2021a). Specifically, in order to evaluate groundwater migration to the surface water of the Tygart Valley River, DAFs specific to human health and to ecological receptors were calculated in accordance with Section B.2.1 and B.2.2, respectively, of the revised WVDEP Technical Guidance Manual (June 2020).

Based on the DAF-adjusted screening evaluation, none of the detected concentrations in groundwater exceed either a human health or ecological WQS. Therefore, the groundwater migration to surface water pathway was demonstrated to be an incomplete pathway for the Site for both human and ecological receptors.

Groundwater Monitoring Program

A groundwater monitoring program has been developed to demonstrate the contaminant plume is stable or declining. The proposed plan is presented in Section 6.3.

Agreements for Monitoring Program

The monitoring wells to be included in the monitoring program are all on the Site; therefore, no agreements are needed.

Consistent with Environmental Laws

The monitoring program does not violate any state or federal environmental laws or regulations.

5.4 UNCERTAINTY AND RISK

Uncertainties are inherent in every environmental assessment due to the potential for variability between data points (e.g., soil samples). Because the selection and implementation of a remedy

are based on the environmental assessment results, those uncertainties carry over to the selected remedy.

The remedies proposed in this RAWP were designed to minimize uncertainty and associated risk to the extent practical. The residential land use restriction, groundwater use restriction, and the requirement to implement health and safety procedures contained in the LUC will be implemented Site-wide. Finally, annual inspections and reporting will ensure that the selected remedies remain effective in the future.

6.0 STATEMENT OF WORK TO ACCOMPLISH REMEDIATION

Institutional and engineering controls and will be used as the final remedy to protect human health and the environment. Additionally, annual inspections and reporting will be implemented to ensure the controls remain effective in the future. These measures are described in more detail below.

6.1 INSTITUTIONAL CONTROLS

An LUC will be recorded in the Taylor County Clerk's Office that contains specific requirements that must be followed by the current and any future property owners to protect against the potential risks described in Section 3.2. The draft LUC is presented in Appendix B.

6.1.1 Potable Use of Groundwater

As described in Section 5.3, the groundwater COC identified for the Site include benzo(b)fluoranthene, cobalt, lead, and manganese. Therefore, the LUC prohibits the use or extraction of groundwater for any purpose, except for groundwater monitoring and/or remediation.

6.1.2 Residential Land Use

Arsenic, lead, manganese, mercury, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene were detected in soil at concentrations that exceed the residential soil De Minimis Standards, indicating the potential for unacceptable human health risk under a hypothetical future residential Site use scenario. Therefore, the LUC prohibits residential use, as defined by W. Va. Code § 22-22-2(bb), including, but not limited to, schools, day care centers, nursing homes, or other residential-style facilities or recreational areas.

6.1.3 Excavation at the Site

The risk assessment did not identify potential unacceptable exposure to future construction workers conducting excavation projects at the Site. However, as part of the previous remedial action conducted by USEPA from 2008 through 2010, there were several areas across the Site where lead-impacted china debris was capped or encapsulated (refer to discussion in Section 1.3). Figure 3 shows the approximate extent of these areas, although the exact limits of buried china debris are not known. Therefore, the LUC contains language requiring that specific health and safety procedures be implemented Site-Wide during excavation to prevent potential exposure.

6.2 SOIL COVER

As described in Section 3.3, the ELCR for a lifetime recreational receptor associated with exposure to surface soil at the site is 2 x 10⁻⁶, which slightly exceeds the Site's acceptable risk benchmark of 1 x 10⁻⁶. This result is driven by incidental ingestion of benzo(a)pyrene. Mitigation of surface soil samples SS-2-CORE and SS-3-CORE would be sufficient to reduce these potential risks to acceptable levels. Documentation of the post-mitigation risks with SS-2-CORE and SS-3-CORE removed from the surface soil dataset is provided in Appendix C. Additionally, several hot spot locations were identified where concentrations of lead or mercury exceed the industrial De Minimis Values. Specifically, lead at sample locations SS-3-CORE (0-2 feet), SS-14-CORE (0-4 feet), and SB-14-CORE (4-6 feet) and mercury at locations SS-4-CORE (0-2 feet) and SB-4-CORE (4-6 feet). Accordingly, these locations will also require a cover to prevent potential unacceptable exposure for future recreational users of the Site.

In order to mitigate these locations, STTWA will install a 12-inch soil cover over sample locations SS-2-CORE, SS-3-CORE, SS-14-CORE/SB-14-CORE, and SS-4-CORE/SB-4-CORE. The 12-inch soil cover will serve as a direct contact cover preventing exposure to the identified areas of contaminated soil described above. The areas requiring the soil cover are shown on Figure 3 and can be grouped into a lead remediation area (which also includes the samples requiring mitigation for PAHs) and a mercury remediation area. As discussed and agreed upon during a conference call on April 7, 2022 between STTWA, WVDEP, and CEC, the aerial extent of the soil

cover areas were determined using XRF data collected as part of the CORE's 2019 investigation. Specifically, as described in Section 2, CORE screened surface soil at 133 locations across the Site using an XRF. Screening was conducted for arsenic, barium, cadmium, chromium, lead, selenium, silver, and mercury. For the lead remediation area, the XRF sample locations and results in the vicinity of sample locations SS-3-CORE and SS-14-CORE/SB-14-CORE, are shown on Figure 3 and Table 4. The aerial extent of the lead soil cover was determined by extending the cover outward from each of the sampling locations to the nearest XRF location with acceptable results. For lead, an acceptable XRF concentration was determined to be 200 mg/Kg or below (as discussed and agreed upon with WVDEP during a conference call on April 7, 2022).

For mercury, of the 42 surface and 31 subsurface samples collected at the Site, only sample SS-4-CORE/SB-4(4-6)-CORE had a mercury concentration that exceeded the residential De Minimis value. None of the XRF results for mercury in the vicinity of sample SS-4-CORE/SB-4(4-6)-CORE had detectable concentration of mercury. Therefore, similar to lead, the mercury remediation area was determined by extending the cover outward to the nearest XRF location with an acceptable mercury concentration. The mercury remediation area is shown on Figure 3 with XRF results summarized in Table 4.

The cover will be installed in accordance with the Default Soil Cover requirements detailed in Appendix F of the WVDEP Technical Guidance Manual (June 2020), which is included in Appendix D. Specifically, the requirements described in Section F.2.1 will be followed. The source of borrow material will be determined as part of the contractor selection process once the RAWP is approved. If the identified borrow source is from an area that has previously been used for commercial, agricultural, or industrial purposes, the material will be tested for potential contaminants prior to being used. STTWA will consult with the OER WVDEP project manager if borrow source testing is needed.

As part of the final remedy, the soil cover will be maintained into the future to prevent future receptors from unacceptable exposure. Accordingly, a description of the soil cover (i.e., Engineering Control) is included in the LUC along with a requirement that the cover be

maintained. The Draft LUC is provided as Appendix B. The LUC will be recorded in the Taylor County Clerk's Office upon WVDEP approval of the RAWP and implementation of the remedy.

6.3 NATURAL ATTENUATION MONITORING AND REPORTING

The proposed monitoring plan is intended to meet the requirements of Section 5.1.4.4 of the VRP Guidance Manual dated June 2020. The work performed under this plan will be in general accordance with the SAWP for the Site that was approved by WVDEP on August 31, 2020. Specifics regarding sampling procedures, analytical methods, detection limits, sample identification, and health and safety procedures can be found in the approved SAWP.

Six (6) additional rounds of groundwater samples will be collected from monitoring wells MW-1 through MW-6 to supplement the two (2) rounds of samples that were collected in January 2019 and September 2020 [for a total of eight (8) rounds as required under Section 5.1.4.4 of the VRP Guidance Manual]. Table 3 presents the groundwater analytical results for the Site along with a comparison to the most recent De Minimis value updated in December 2021. As indicated in Table 3, the following COC have been identified in groundwater at the Site:

- MW-1: lead;
- MW-2: manganese;
- MW-3: benzo(b)fluoranthene;
- MW-4: cobalt and manganese;
- MW-5: cobalt and manganese; and
- MW-6: cobalt and manganese.

Mr. Curtis Phillips and Dr. Ross Brittain of WVDEP and Ms. Elizabeth Stas of CEC participated in a conference call on March 4, 2021 to discuss the approach for MNA sampling and the groundwater remedy at the Site. During the March 4, 2021 call, the team discussed monitoring each well for the COC that were exceeded in that particular well, plus any additional COC that were identified upgradient. Accordingly, the follow monitoring approach was developed for the Site:

- Downgradient well MW-1: cobalt, manganese, and lead;
- MW-3: benzo(b)fluoranthene;
- Upgradient/side gradient well MW-4: cobalt; and
- Upgradient/side gradient wells MW-5 and MW-6: cobalt and manganese.

In addition to the site COC, each well will be sampled for the following MNA indicator parameters: conductivity, dissolved oxygen, nitrate, ferrous iron, sulfate, methane, alkalinity, oxidation reduction potential (ORP), and pH. Field duplicate samples are not required for MNA monitoring. Analytical methods and sampling methodologies will be consistent with the previous September 2020 sampling event and sample will be analyzed by a WV certified laboratory. An additional six (6) rounds of samples will be conducted. For any given well/constituent, if four (4) rounds of consecutive sampling indicate no exceedances of the De Minimis values, monitoring may cease at that location.

A report summarizing the sampling results will be submitted to the WVDEP prior to December 31 each year. The report will include charts and graphs of the complete dataset (2019 and each subsequent year's results) to evaluate concentration trends for each COC.

6.4 LUC ANNUAL INSPECTIONS AND REPORTING

The property owner shall conduct inspections of the property to monitor compliance with the LUC at least once per year within 60 days of the anniversary date of the LUC. These inspections will include an evaluation to confirm that residential use of the property is not occurring, groundwater is not being used, and that excavation activities are being conducted in accordance with appropriate health and safety and soil management protocols.

The annual inspections will also include observation of the soil cover and USEPA cap and encapsulation areas. Signs of movement in slope areas (e.g., exposure of the underlying geotextile fabric in upslope areas or significant vegetation or trees breaching the cover areas) or settlement in the flat areas (depressions, potholes, etc.) will be noted. If such conditions are noted, they will be repaired within 30 days by regrading and/or placing additional soil such that the 12-inch cover thickness is maintained.

The annual inspections (and cover repairs if performed) will be recorded on the Annual LUC Inspection Form that is included along with the draft LUC provided in Appendix B. The owner shall submit the completed form electronically to <u>DEPOERFileCopy@WV.Gov</u> or in hardcopy format to:

West Virginia Department of Environmental Protection Office of Environmental Remediation Attn: LUC Inspections 601 57th Street SE Charleston, West Virginia 25304

6.5 IMPLEMENTATION SCHEDULE

The anticipated schedule for implementing this RAWP is as follows:

- April 2021 CEC conducted the third round of MNA monitoring;
- June 2022 Stantec (under contract with WVDEP) conducted the fourth round of MNA monitoring;
- September 2022 WVDEP approves RAWP;
- Third Quarter 2022 Stantec conducts fifth round of MNA monitoring;
- Fourth Quarter 2022 Stantec conducts sixth round of MNA monitoring and prepares and submits annual MNA Report for 2022;
- Fourth Quarter 2022 STTWA implements soil cover remediation activities;
- Fourth Quarter 2022 WVDEP approves LUC and STTWA files LUC at Tayler County Courthouse;
- First Quarter 2023 Stantec conducts seventh round of MNA monitoring;
- First Quarter 2023 STTWA submits RAC Report;
- First Quarter 2023 WVDEP approves RAC Report;

- Second Quarter 2023 Stantec conducts eighth round of MNA monitoring and prepares and submits annual MNA Report for 2023;
- Second Quarter 2023 STTWA submits Final Report and Certificate of Completion request;
- Second Quarter 2023 WVDEP approves Final Report;
- Third Quarter 2023 WVDEP issues Certificate of Completion; and
- December 2023 and each year thereafter LUC annual inspection (within 60 days of LUC anniversary date).

7.0 **REFERENCES**

Voluntary Remediation Program Application submitted by the Save the Tygart Watershed Association, Inc. to West Virginia Department of Environmental Protection (WVDEP) May 29, 2020 and accepted July 14, 2020.

Voluntary Remediation Agreement, VRP Site Number 20019, executed between the Save the Tygart Watershed Association, Inc. and the WVDEP on August 5, 2020.

Civil & Environmental Consultants, Inc. (CEC, 2020). Supplemental Site Assessment Work Plan. Former Carr China Manufacturing Facility, Grafton, Taylor County, West Virginia, VRP Project # 20019. July 7, 2020. Revised August 18, 2020. Revised August 27, 2020.

Civil & Environmental Consultants, Inc. (CEC, 2021a). Site Assessment Report. Former Carr China Manufacturing Facility, Grafton, Taylor County, West Virginia, VRP Project # 20019. December 10, 2020. Revised January 19, 2021.

Civil & Environmental Consultants, Inc. (CEC, 2021b). Human Health and Ecological Risk Assessment Report. Former Carr China Manufacturing Facility, Grafton, Taylor County, West Virginia, VRP Project # 20019. March 16, 2021. Revised April 28, 2021.

Core Environmental Services, Inc. (CORE; 2018). Phase I Environmental Site Assessment Report – Carr China Manufacturing Facility – 230 Newcome Avenue – Grafton, Taylor County, West Virginia. December 2018.

Core Environmental Services, Inc. (CORE; 2019a). Sampling and Analysis Plan - Phase II Environmental Site Assessment – Carr China Manufacturing Facility – 230 Newcome Avenue – Grafton, Taylor County, West Virginia. January 2019.

Core Environmental Services, Inc. (CORE; 2019b). Phase II Environmental Site Assessment Report – Carr China Manufacturing Facility – 230 Newcome Avenue – Grafton, Taylor County, West Virginia. February 2019.

TechLaw, Inc. (TechLaw, 2008). Final Trip Report – Removal Site Evaluation. Carr China Site – Grafton, Taylor County, West Virginia. October 7, 2008.

United States Environmental Protection Agency Region 3 (USEPA, 2009). Request for Funding for a Removal Action at the Carr China Site, Grafton, Taylor County, West Virginia. September 15, 2009.

United States Environmental Protection Agency Region 3 (USEPA).Series of 10 PollutionReportsdocumentingtheRemovalAction.Availableat:https://response.epa.gov/site/site_profile.aspx?site_id=4151Availableat:

Civil & Environmental Consultants, Inc.

United States Environmental Protection Agency Region 3 (USEPA, 2011). Close-Out Special Bulletin, Carr China Site, 230 Newcome Avenue, Grafton, WV, 26354. April 2011.

West Virginia Department of Environmental Protection (WVDEP, 2020). West Virginia Voluntary Remediation and Redevelopment Act Guidance Manual. June 2020.

West Virginia Department of Environmental Protection (WVDEP, 2021). De Minimis Table (https://dep.wv.gov/dlr/oer/technicalguidanceandtemplates/Pages/default.aspx). Effective December 2, 2021.

West Virginia Department of Environmental Protection (WVDEP, 2020c). Letter from Mr. Curtis Phillips, WVDEP Project Manager to Dr. Kelley Flaherty, STTWA, Site Assessment Work Plan Rev. 0 Comments, VRP #20019. July 30, 2020.

West Virginia Department of Environmental Protection (WVDEP, 2020d). Letter from Mr. Curtis Phillips, WVDEP Project Manager to Dr. Kelley Flaherty, STTWA, Site Assessment Work Plan Rev. 1 Comments, VRP #20019. August 25, 2020.

West Virginia Department of Environmental Protection (WVDEP, 2020e). Letter from Mr. Curtis Phillips, WVDEP Project Manager to Dr. Kelley Flaherty, STTWA approving the Supplemental Site Assessment Work Plan, VRP Project #20019. August 31 2020.

West Virginia Department of Environmental Protection (WVDEP, 2021a). Letter from Mr. Curtis Phillips, WVDEP Project Manager to Dr. Kelley Flaherty, STTWA, Site Assessment Report (Rev 0) Comments, VRP Project #20019. January 7, 2021.

West Virginia Department of Environmental Protection (WVDEP, 2021b). Letter from Mr. Curtis Phillips, WVDEP Project Manager to Dr. Kelley Flaherty, STTWA approving the Site Assessment Report Rev 1, VRP Project #20019. January 25, 2021.

West Virginia Department of Environmental Protection (WVDEP, 2021c). Letter from Mr. Curtis Phillips, WVDEP Project Manager to Dr. Kelley Flaherty, STTWA. Risk Assessment Rev. 0 Comments, VRP #20019. April 14, 2021.

West Virginia Department of Environmental Protection (WVDEP, 2021d). Letter from Mr. Curtis Phillips, WVDEP Project Manager to Dr. Kelley Flaherty, STTWA. Risk Assessment Rev. 1 Approval, VRP #20019. May 3, 2021.

West Virginia Department of Health and Human Resources (WVDHHR; 2009). Health Consultation. Carr China Site – Carr China Drive and Pottery Lane – Grafton, Taylor County, West Virginia. EPA Facility ID WVN000306608. August 31, 2009.

TABLES

		Screening	Criteria ⁽¹⁾					Sample Information ⁽²	2)			
		WVDEP De Minimis Value for	WVDEP De Minimis Value	SS-1-CORE	Duplicate-1 (Duplicate of SS-1- CORE)	SS-2-CORE	SS-3-CORE	SS-4-CORE	SS-5-CORE	SS-6-CORE	Duplicate-2 (Duplicate of SS- 6-CORE)	SS-7-CORE
Constituent	CAS No.	Residential Soil	for Industrial Soil	Investigation 1/14/2019 0-2 ft. bgs	Duplicate 1/14/2019 0-2 ft. bgs	Investigation 1/14/2019 0-2 ft. bgs	Investigation 1/14/2019 0-2 ft. bgs	Investigation 1/14/2019 0-2 ft. bgs	Investigation 1/14/2019 0-2 ft. bgs	Investigation 1/15/2019 1-2 ft. bgs	Duplicate 1/15/2019 1-2 ft. bgs	Investigation 1/15/2019 0-4 ft. bgs
Metals (mg/kg)	1			-	-					-		
Aluminum	7429-90-5	77000	1000000	5200	5330	10800	5100	10700	11100	6350	6360	7800
Antimony	7440-36-0	31	470	< 2	< 2	< 2.04	< 2.02	< 2.02	< 2	< 2	< 2	< 2.08
Arsenic ⁽¹⁾	7440-38-2	13.1	30	2.96 J	2.48 J	2.89 J	7.43	12.6	13.7	6.68	7.13	< 2.08 *
Barium	7440-39-3	15000	220000	48.2	47.8	69.2	74.1	283	116	22	23.9	58.6
Beryllium	7440-41-7	160	2300	0.455 J	0.435 J	0.857	0.338 J	0.919	0.87	0.385 J	0.4 J	0.661
Cadmium	7440-43-9	37	530	0.315 J	0.295 J	0.673 J	1.43	0.939 J	0.735 J	0.48 J	0.245 J	0.5 J
Chromium ⁽¹⁾	16065-83-1	120000	1000000	8.07	7.21	17.5	7.44	17.5	17.2	9.38	9.62	13.7
Cobalt	7440-48-4	23	350	7.07	6.04	13.5	9.2	16.3	14.5	10	8.16	12.5
Copper	7440-50-8	3100	47000	10.3	8.79	24.2	95.8	36.7	36.1	13.2	15.7	29.8
Lead	7439-92-1	400	800	20.1	23.1	29.3	1250	38.6	18	10.5	11.3	165
Manganese	7439-92-1	1800	26000	281	250	529	280	1950	540	264	187	201
Nickel	7439-90-5	1500	22000	9.57	8.83	25.1	7.67	37.2	30.6	11.6	11.7	17.2
Selenium	7782-49-2	390	5800	< 3	< 3	< 3.06	< 3.03	< 3.03	< 3	< 3	< 3	< 3.12
Silver	7440-22-4	390	5800	0.44 J	< 0.35	< 0.357	< 0.354	< 0.354	< 0.35	< 0.35	< 0.35	< 0.365
Thallium	7440-28-0	0.78	12	< 2 *	< 2 *	< 2.04 *	< 2.02 *	< 2.02 *	< 2 *	< 2 *	< 2 *	< 2.08 *
Vanadium	7440-20-0	460	8400	11	9.2	20.4	11.3	18.7	17.4	13.8	14.8	12.7
Zinc	7440-62-2	23000	350000	37.5	35.3	74.4	172	108	78.8	34.4	37	75
Mercury	7439-97-6	3.1	3.1	0.038 J	0.036 J	0.074 J	0.063 J	40.3	0.763	0.044 J	0.043 J	0.025 J
SVOCs (mg/kg)	7439-97-0	5.1	5.1	0.036 J	0.030 J	0.074 J	0.003 J	40.3	0.703	0.044 J	0.043 J	0.025 J
Acenaphthene	83-32-9	4100	47000	< 0.067	< 0.067	< 0.067	< 0.067	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067
Acenaphthylene	208-96-8	4200	51000	< 0.067	< 0.067	< 0.067	< 0.067	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067
Anthracene	120-12-7	23000	350000	< 0.067	< 0.067	< 0.067	< 0.067	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067
Benzo[a]anthracene	56-55-3	1.5	320	0.121 J	0.122 J	0.125 J	0.222 J	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067
Benzo[a]pyrene	50-32-8	0.11	21	0.121 J	0.122 J	0.127 J	0.301 J	< 0.067 *	< 0.067 *	< 0.067 *	< 0.066 *	< 0.067 *
Benzo[b]fluoranthene	205-99-2	1.1	210	0.121 J	0.175 J	0.127 J	0.403	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067
Benzo[g,h,i]perylene	191-24-2	1800	23000	0.088 J	0.087 J	0.086 J	0.302 J	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067
Benzo[k]fluoranthene	207-08-9	11	2100	< 0.067	< 0.067	0.073 J	0.132 J	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067
Chrysene	218-01-9	110	21000	0.14 J	0.133 J	0.138 J	0.25 J	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067
Dibenz(a,h)anthracene	53-70-3	0.11	21000	< 0.067 *	< 0.067 *	< 0.067 *	< 0.067 *	< 0.067 *	< 0.067 *	< 0.067 *	< 0.066 *	< 0.067 *
Fluoranthene	206-44-0	2400	30000	0.265 J	0.2 J	0.216 J	0.484	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067
Fluorene	86-73-7	2900	37000	< 0.067	< 0.067	< 0.067	< 0.067	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067
Indeno[1,2,3-cd]pyrene	193-39-5	1.1	210	0.101 J	0.404	0.404	0.318 J	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067
Naphthalene	91-20-3	2.4	110	< 0.067	< 0.067	0.101 J < 0.067	< 0.067	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067
Phenanthrene	67580	23000	350000	< 0.067	< 0.067	< 0.067	0.186 J	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067
Pyrene	129-00-0	2300	34000	0.22 J	0.212 J	0.178 J	0.386	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067
VOCs (mg/Kg)	120 00 0	2000	01000	0.22 0	0.212 0	0.110 0	0.000	0.001	0.001	0.001	0.000	0.001
Acetone	67-64-1	61000	110000	0.0831	0.094	0.0152 J	0.061	< 0.01	0.0305	0.0354	< 0.0113	0.0391
Benzene	71-43-2	1.2	54	< 0.001	< 0.000964	< 0.000964	< 0.000977	0.00297	0.00287	< 0.000951	< 0.00104	0.00176 J
Carbon disulfide	75-15-0	740	740	< 0.0072	< 0.00692	< 0.00692	< 0.00702	0.123	0.0786	< 0.00683	< 0.00748	< 0.00775
Ethylbenzene	100-41-4	6.2	270	< 0.00137	< 0.00131	< 0.00131	< 0.00133	< 0.00126	< 0.00124	< 0.0013	< 0.00142	< 0.00147
2-Hexanone ⁽¹⁾	591-78-6	3400	3400	< 0.0155	< 0.0149	< 0.0149	< 0.0151	< 0.0143	< 0.0141	< 0.0147	< 0.0161	< 0.0167
4-Methyl-2-pentanone	108-10-1	3400	3400	< 0.0113	< 0.0149	< 0.0109	< 0.011	< 0.0104	< 0.0103	< 0.0107	< 0.0117	< 0.0122
MTBE	1634-04-4	50	2200	< 0.0065	< 0.00625	< 0.00625	< 0.00633	< 0.006	< 0.00592	< 0.00617	< 0.00675	< 0.007
Toluene	108-88-3	820	820	< 0.00136	< 0.00131	0.00151 J	< 0.00133	0.00184 J	0.00199 J	< 0.00129	< 0.00141	< 0.00146
1,2,4-Trimethylbenzene	95-63-6	220	220	< 0.00130	< 0.00131	< 0.00136	< 0.00133	< 0.00131	< 0.00129	< 0.00135	< 0.00141	< 0.00140
o-Xylene ⁽¹⁾	1330-20-7	260	260	< 0.00142	< 0.00130	< 0.00130	< 0.00138	< 0.00115	< 0.00129	< 0.00133	< 0.00129	< 0.00133
-		260	260		< 0.0012		< 0.00121					
m,p-Xylene ⁽¹⁾	1330-20-7	200	200	< 0.00265	< 0.00204	< 0.00254	> 0.00258	< 0.00244	< 0.00241	< 0.00251	< 0.00275	< 0.00285

		Screening	Criteria ⁽¹⁾					Sample Information	2)			
		WVDEP	WVDEP	SS-8-CORE	SS-9-CORE	SS-10-CORE	SS-11-CORE	SS-12-CORE	Duplicate-1 (Duplicate of SS-12- CORE)	SS-13-CORE	SS-14-CORE	SS-15-CORE
Constituent	CAS No.	De Minimis Value for Residential Soil	De Minimis Value for Industrial Soil	Investigation 1/15/2019 0-4 ft. bgs	Investigation 1/15/2019 0-4 ft. bgs	Investigation 1/15/2019 0-4 ft. bgs	Investigation 1/15/2019 1.5-2 ft. bgs	Investigation 1/16/2019 1-2 ft. bgs	Duplicate 1/16/2019 1-2 ft. bgs	Investigation 1/16/2019 0-4 ft. bgs	Investigation 1/16/2019 0-4 ft. bgs	Investigation 1/16/2019 0-2 ft. bgs
Metals (mg/kg)	CAS NO.			0-4 It. bys	0-4 It. bys	0-4 It. bgs	1.5-2 It. bys	1-2 It. bys	1-2 It. bys	0-4 It. bgs	0-4 It. bgs	0-2 II. 595
	7400 00 5	77000	100000	5040	10100	10000	4900	5500	7500	6000	3390	6020
Aluminum	7429-90-5	77000	1000000 470	5040 < 2	10100 < 2.04			5560 < 2.06	7580 < 2	6090 < 2		6920 < 2
Antimony	7440-36-0 7440-38-2	31 1 <u>3</u> .1	470 30	_	< 2.04 2.45 J	2.00	-		· -	< 2 3.26 J	< 2.02 < 2.02 *	< 2 *
Arsenic ⁽¹⁾								4.26 J				
Barium	7440-39-3 7440-41-7	15000 160	220000 2300	28.1	66.5 0.648	60.8 0.784	75.5 0.485 J	31.4 0.418 J	60.2 0.71	55.8 0.405 J	33.7 0.303 J	52.8 0.505
Beryllium Cadmium	7440-41-7 7440-43-9	37	530	0.31 J 1.42	0.842 J	1.05	0.465 J	< 0.206	< 0.2	< 0.2	0.303 J 0.273 J	< 0.2
Chromium ⁽¹⁾	16065-83-1	120000		5.78	16.3	1.05		6.83	6.82	7.34	4.59 J	11.5
	7440-48-4	23	1000000 350	5.98	14.6	13.2	6.24 3.49 J	5.66	5.64	5.68	4.59 J 3.93 J	8.12
Cobalt	7440-48-4	3100	47000	18.5	24	31.3	5.49 J	10.4	10.6		12.1	13.5
Copper Lead	7440-50-8 7439-92-1	400	800	962	934	79.2	18.1	8.79	8.56	11 12.9	12.1 1410	13.5 8.96
	7439-92-1 7439-96-5	400 1800	26000	129	474	532	136	276	630	292	1410	8.96 291
Manganese Nickel	7439-96-5 7440-02-0	1500	28000	7.37	22.1	23.5	8.81	6.89	6.64	8.46	5.57	16
Selenium	7782-49-2	390	5800	< 3	< 3.06	< 3.09	< 3	< 3.09	< 3	< 3	< 3.03	< 3
Silver	7440-22-4	390	5800	< 0.35	< 0.357	< 0.361	10.4	< 0.361	< 0.35	< 0.35	< 0.354	< 0.35
Thallium	7440-22-4	0.78	12	< 2 *	< 2.04 *	< 2.06 *	< 2 *	< 2.06 *	< 2 *	< 2 *	< 2.02 *	< 2 *
Vanadium	7440-20-0	460	8400	16.1	16.4	21.7	9.37	10.3	10.8	10.6	7.67	11.7
Zinc	7440-02-2	23000	350000	254	94.7	114	33.9	32.8	33.5	31.1	234	45.7
Mercury	7439-97-6	3.1	3.1	0.045 J	0.025 J	0.02 J	0.026 J	0.023 J	0.026 J	0.026 J	0.067 J	< 0.02
SVOCs (mg/kg)	7439-97-0	5.1	5.1	0.045 5	0.025 5	0.02 3	0.020 3	0.025 5	0.020 J	0.020 3	0.007 3	< 0.02
Acenaphthene	83-32-9	4100	47000	< 0.067	< 0.067	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067	< 0.066	< 0.066
Acenaphthylene	208-96-8	4200	51000	< 0.067	< 0.067	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067	< 0.066	< 0.066
Anthracene	120-12-7	23000	350000	< 0.067	< 0.067	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067	< 0.066	< 0.066
Benzo[a]anthracene	56-55-3	1.5	320	0.223 J	0.318 J	< 0.067	0.268 J	< 0.067	< 0.066	0.094 J	0.079 J	< 0.066
Benzo[a]pyrene	50-32-8	0.11	21	0.175 J	0.281 J	< 0.067 *	0.251 J	< 0.067 *	< 0.066 *	0.117 J	0.098 J	0.091 J
Benzo[b]fluoranthene	205-99-2	1.1	210	0.24 J	0.433	< 0.067	0.421	< 0.067	< 0.066	0.17 J	0.142 J	0.096 J
Benzo[g,h,i]perylene	191-24-2	1800	23000	0.104 J	0.175 J	< 0.067	0.206 J	< 0.067	< 0.066	0.113 J	0.088 J	< 0.066
Benzo[k]fluoranthene	207-08-9	11	2100	0.09 J	0.12 J	< 0.067	0.149 J	< 0.067	< 0.066	< 0.067	< 0.066	< 0.066
Chrysene	218-01-9	110	21000	0.188 J	0.263 J	< 0.067	0.309 J	< 0.067	< 0.066	0.108 J	0.091 J	< 0.066
Dibenz(a,h)anthracene	53-70-3	0.11	21	< 0.067	< 0.067 *	< 0.067 *	< 0.067 *	< 0.067 *	< 0.066 *	< 0.067 *	< 0.066 *	< 0.066 *
Fluoranthene	206-44-0	2400	30000	0.451	0.518	< 0.067	0.308 J	< 0.067	< 0.066	0.147 J	0.199 J	0.071 J
Fluorene	86-73-7	2900	37000	< 0.067	< 0.067	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067	< 0.066	< 0.066
Indeno[1,2,3-cd]pyrene	193-39-5	1.1	210	0.126 J	0.213 J	< 0.067	0.205 J	< 0.067	< 0.066	0.124 J	0.093 J	< 0.066
Naphthalene	91-20-3	2.4	110	< 0.067	< 0.067	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067	< 0.066	< 0.066
Phenanthrene	67580	23000	350000	0.177 J	0.145 J	< 0.067	0.15 J	< 0.067	< 0.066	< 0.067	< 0.066	< 0.066
Pyrene	129-00-0	2300	34000	0.354	0.443	< 0.067	0.299 J	< 0.067	< 0.066	0.117 J	0.167 J	< 0.066
VOCs (mg/Kg)												
Acetone	67-64-1	61000	110000	0.0199 J	0.0811	< 0.0103	< 0.0124	< 0.011	< 0.0122	0.0345	0.0418	0.0326 J
Benzene	71-43-2	1.2	54	< 0.0009	< 0.00107	< 0.000951	< 0.00114	< 0.00102	< 0.00113	< 0.00109	< 0.00121	0.00327 J
Carbon disulfide	75-15-0	740	740	< 0.00646	0.0167	0.0156	< 0.00822	< 0.00729	0.0238	< 0.00785	< 0.00868	0.0244
Ethylbenzene	100-41-4	6.2	270	< 0.00123	< 0.00145	< 0.0013	< 0.00156	< 0.00138	< 0.00154	< 0.00149	< 0.00165	0.00165
2-Hexanone ⁽¹⁾	591-78-6	3400	3400	< 0.0139	0.0227 J	< 0.0147	< 0.0177	< 0.0157	< 0.0175	< 0.0169	< 0.0187	< 0.0187
4-Methyl-2-pentanone	108-10-1	3400	3400	< 0.0101	0.0237 J	< 0.0107	< 0.0129	< 0.0115	< 0.0128	< 0.0123	< 0.0136	< 0.0136
MTBE	1634-04-4	50	2200	< 0.00583	< 0.00692	< 0.00617	< 0.00742	< 0.00658	< 0.00733	< 0.00708	< 0.00783	< 0.00783
Toluene	108-88-3	820	820	< 0.00122	< 0.00145	0.00156 J	< 0.00155	< 0.00138	< 0.00153	< 0.00148	< 0.00164	0.00225 J
1,2,4-Trimethylbenzene	95-63-6	220	220	< 0.00127	< 0.00151	< 0.00135	< 0.00162	< 0.00144	< 0.0016	< 0.00155	< 0.00171	< 0.00171
o-Xylene ⁽¹⁾	1330-20-7	260	260	< 0.00112	< 0.00133	< 0.00118	< 0.00142	< 0.00126	< 0.00141	< 0.00136	< 0.0015	< 0.0015
m,p-Xylene ⁽¹⁾	1330-20-7	260	260	< 0.00238	< 0.00282	0.00251	< 0.00302	< 0.00268	< 0.00299	< 0.00288	< 0.00319	< 0.00319

		Screening	Criteria ⁽¹⁾				Sample In	formation ⁽²⁾			
		WVDEP De Minimis Value for Residential Soil	WVDEP De Minimis Value for Industrial Soil	SS-16-CORE Investigation 1/16/2019	SS-17-CORE Investigation 1/16/2019	SS-18-CORE Investigation 1/16/2019	SS-19-CORE Investigation 1/16/2019	SS-20-CORE Investigation 1/16/2019	SS-21-CORE Investigation 1/16/2019	SS-22-CORE Investigation 1/16/2019	SS-23-CORE Investigation 1/17/2019
Constituent	CAS No.			0-2 ft. bgs	0-2 ft. bgs	0-2 ft. bgs	0-4 ft. bgs	0-2 ft. bgs	1-2 ft. bgs	0-2 ft. bgs	0-4 ft. bgs
Metals (mg/kg)	Ī										
Aluminum	7429-90-5	77000	1000000	12300	12200	12600	12400	6790	5640	5140	3470
Antimony	7440-36-0	31	470	< 2.06	< 2.04	< 2.02	< 2.04	< 2.08	< 2	< 2.02	< 2.04
Arsenic ⁽¹⁾	7440-38-2	13.1	30	< 2.06 *	11.5	10.4	14.2	2.9 J	4.1 J	< 2.02 *	4.91 J
Barium	7440-39-3	15000	220000	82.2	189	198	147	27.2	23	59.8	32.7
Beryllium	7440-41-7	160	2300	0.948	0.934	0.96	1.12	0.349 J	0.33 J	0.389 J	0.24 J
Cadmium	7440-43-9	37	530	< 0.206	0.352 J	0.384 J	0.332 J	< 0.208	< 0.2	0.313 J	0.408 J
Chromium ⁽¹⁾	16065-83-1	120000	1000000	19.1	17.2	18.5	17.7	8.93	7.49	5.04 J	13.5
Cobalt	7440-48-4	23	350	15	16	15.4	16.1	6.42	7.66	4.48 J	3.62
Copper	7440-50-8	3100	47000	25.7	36.5	37.5	39.2	11	12.8	8.6	8.96
Lead	7439-92-1	400	800	14.7	18.9	16.9	19.2	9.65	13.3	87.9	40.7
Manganese	7439-96-5	1800	26000	553	886	683	1090	204	218	247	202
Nickel	7440-02-0	1500	22000	26.8	32.7	32.1	37.5	7.86	8.57	5.86	5.65
Selenium	7782-49-2	390	5800	< 3.09	< 3.06	< 3.03	< 3.06	< 3.12	< 3	< 3.03	< 3.06
Silver	7440-22-4	390	5800	< 0.361	< 0.357	< 0.354	< 0.357	< 0.365	< 0.35	< 0.354	< 0.357
Thallium	7440-28-0	0.78	12	< 2.06 *	< 2.04 *	< 2.02 *	< 2.04 *	< 2.08 *	< 2 *	< 2.02 *	< 2.04 *
Vanadium	7440-62-2	460	8400	21	18.1	19.1	17.7	13.3	10.8	7.62	7.28
Zinc	7440-66-6	23000	350000	68.6	74.8	77.9	77.3	33.9	29.5	97.1	33.5
Mercury	7439-97-6	3.1	3.1	< 0.02	0.045 J	0.047 J	0.05 J	0.037 J	0.031 J	0.033 J	0.049 J
SVOCs (mg/kg)											
Acenaphthene	83-32-9	4100	47000	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067	< 0.066	< 0.067	< 0.066
Acenaphthylene	208-96-8	4200	51000	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067	< 0.066	< 0.067	< 0.066
Anthracene	120-12-7	23000	350000	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067	< 0.066	< 0.067	< 0.066
Benzo[a]anthracene	56-55-3	1.5	320	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067	< 0.066	< 0.067	< 0.066
Benzo[a]pyrene	50-32-8	0.11	21	< 0.067 *	< 0.067 *	< 0.067 *	< 0.066 *	< 0.067 *	< 0.066 *	< 0.067 *	< 0.066 *
Benzo[b]fluoranthene	205-99-2	1.1	210	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067	< 0.066	< 0.067	< 0.066
Benzo[g,h,i]perylene	191-24-2	1800	23000	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067	< 0.066	< 0.067	< 0.066
Benzo[k]fluoranthene	207-08-9	11	2100	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067	< 0.066	< 0.067	< 0.066
Chrysene	218-01-9	110	21000	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067	< 0.066	< 0.067	< 0.066
Dibenz(a,h)anthracene	53-70-3	0.11	21	< 0.067 *	< 0.067 *	< 0.067 *	< 0.066 *	< 0.067 *	< 0.066 *	< 0.067 *	< 0.066 *
Fluoranthene	206-44-0	2400	30000	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067	< 0.066	< 0.067	< 0.066
Fluorene	86-73-7	2900	37000	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067	< 0.066	< 0.067	< 0.066
Indeno[1,2,3-cd]pyrene	193-39-5	1.1	210	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067	< 0.066	< 0.067	< 0.066
Naphthalene	91-20-3	2.4	110	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067	< 0.066	< 0.067	< 0.066
Phenanthrene	67580	23000	350000	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067	< 0.066	< 0.067	< 0.066
Pyrene	129-00-0	2300	34000	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067	< 0.066	< 0.067	< 0.066
VOCs (mg/Kg)											
Acetone	67-64-1	61000	110000	0.0285	< 0.0111	< 0.01	< 0.0117	< 0.0104	< 0.01	0.158	0.372
Benzene	71-43-2	1.2	54	< 0.000861	< 0.00103	< 0.000925	< 0.00108	0.00526	< 0.000925	< 0.00116	< 0.0018
Carbon disulfide	75-15-0	740	740	0.0149	0.0549	0.0477	< 0.00775	0.0727	< 0.00665	< 0.00831	< 0.0129
Ethylbenzene	100-41-4	6.2	270	< 0.00117	< 0.0014	< 0.00126	< 0.00147	< 0.00131	< 0.00126	< 0.00158	< 0.00245
2-Hexanone ⁽¹⁾	591-78-6	3400	3400	< 0.0133	< 0.0159	< 0.0143	< 0.0167	< 0.0149	< 0.0143	< 0.0179	< 0.0278
4-Methyl-2-pentanone	108-10-1	3400	3400	< 0.00971	< 0.0116	< 0.0104	< 0.0122	< 0.0109	< 0.0104	< 0.013	< 0.0203
MTBE	1634-04-4	50	2200	< 0.00558	< 0.00667	< 0.006	< 0.007	< 0.00625	< 0.006	< 0.0075	< 0.0117
Toluene	108-88-3	820	820	< 0.00117	0.0046	< 0.00126	< 0.00146	0.0029 J	< 0.00126	0.0032 J	0.00582
1,2,4-Trimethylbenzene	95-63-6	220	220	< 0.00122	< 0.00145	< 0.00131	< 0.00153	< 0.00136	< 0.00131	< 0.00164	< 0.00255
o-Xylene ⁽¹⁾	1330-20-7	260	260	< 0.00107	< 0.00128	< 0.00115	< 0.00134	< 0.0012	< 0.00115	< 0.00144	< 0.00224
m,p-Xylene ⁽¹⁾	1330-20-7	260	260	< 0.00227	< 0.00271	< 0.00244	< 0.00285	< 0.00254	< 0.00244	< 0.00305	< 0.00475

Normal Nordel Definition Nordel Definition Nordel Definition Solution			Screening	Criteria ⁽¹⁾		-							Sampl	e Infe	ormat	tion ⁽²⁾							
Constitution<			De Minimis Value for	De Minimis Value	(Duplicate of SS-23- CORE) Duplicate		nvestigatio	n	In	vestigatio		Inv	vestigatior		In	vestigatio		Investigation	Investigation		nvestig	ation	
Matai Product	Constituent	CAS No.																					
Auminum 7440-50 7400-50 7400-50 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>· _ · · · · · · · · · · · · · · · · · ·</th><th></th><th></th><th> · · · J ·</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th><u>-3-</u></th><th>_</th></t<>							· _ · · · · · · · · · · · · · · · · · ·			· · · J ·												<u>-3-</u>	_
Antmany 7440360 311 470 < 2 < 2 < 2 < 2 2 2 2 3		7429-90-5	77000	100000	2570		5320			5190			4760			5590		11200	6940		953(า	
Apendprin 7440 352 (12) 300 42,2 J 3.89 J 4.48 J 4.48 J 4.44 J 4.42 J 6.89 J 6.43 J 6.44 J 6.453 J 6.44 J 6.44 J 6.44 J 6.44 J 6.40 J 6.40 J 6.40 J 6.40 J 6.40 J 6.40 J 7.40 4.40 6.00 7.20 J 7.44 J 7.40 4.23 7.30 7.40 4.11 7.40 4.11 7.40 3.00 7.40 3.00 7.40 3.00 7.40 3.00 7.40 3.00 7.40 3.00 7.40 3.00 7.40 3.00 7.40 3.00 7.40 3.00 7.40 3.00 7.40 3.00						<			<			<			<					<		,	
Banum 7440-34-3 10000 220000 25-11 9.8.6 L 9.6.3 L 0.7.15 0.7.0 P 0.0.3 0.0.7.1 L 0.0.7.9 L 0.0.7.1 L <th< td=""><td>,</td><td></td><td></td><td></td><td></td><td></td><td></td><td>.1</td><td></td><td></td><td>.1</td><td></td><td></td><td>.1</td><td></td><td></td><td>.1</td><td></td><td></td><td></td><td></td><td>3</td><td>I.</td></th<>	,							.1			.1			.1			.1					3	I.
Berylam 7440-4-7 100 2300 0.011 J 0.47 J 0.673 J 0.076 J 0.056 J 0.057 J <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Ŭ</td><td></td><td></td><td>0</td><td></td><td></td><td>Ŭ</td><td></td><td></td><td>Ŭ</td><td></td><td></td><td></td><td></td><td></td><td>,</td></t<>								Ŭ			0			Ŭ			Ŭ						,
Charlmunn 140.0.4.5 3 7 530 0.278 J 0.852 J 0.928 J 0.923 J 1.12 J 1.12 J 1.12 J 2.25 1.17 3.02 J 0.73 J 3.02 J 3.03 Markin 7439.05 1.000 2000 4.45 J 1.18 1.18 1.18 2.10 2.10 2.20 2.10 2.10 2.20 2.10 2.10 2.20 2.10 2.20								.1															
Chandimul ¹¹ Yadda A											.1			.1									
Cobatt 7440-48-4 23 350 2.74 J 7.24 15.9 15.9 14.2 11.2 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Ŭ</td><td></td><td></td><td>0</td><td></td><td></td><td>Ŭ</td><td></td><td></td><td>Ŭ</td><td></td><td></td><td></td><td></td><td></td><td>,</td></t<>								Ŭ			0			Ŭ			Ŭ						,
Cooper 740-00.8 S100 47000 8.18 18.3 23.8 20.8 19.7 50.2 19.7																							
Laid 7439-92-1 400 800 28.1 15.1 45.7 52.2 28.5 17.1 20.2 30.3 Nicki 740-02-0 1500 22000 4.44 1 11.0 14.3 10.4 14.7 29.6 12.2 33.3 Silver 740-02-0 300 8600 <																							
Mangamese 7439-08-5 1000 22000 141 157 534 477 580 731 332 1333 12 14 12 13 12																							
Necket 7440-02-0 1500 22000 4.4.4 11.8 14.3 10.4 14.7 20.0 12.2																							
Solenum 7762-49-2 300 6800 < 3 < 3 3 3 3 3 3 3 3 3 3 3																							
Shier 7440-22-4 390 6800 < 0.031 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.036 J 0.063 J 0.035 J 0.023 J 0.014 J 0.023 J 0.014 0.023 J 0.014 0.023 J 0.014 J 0.023 J 0.014 J 0.023 J 0.014 J 0.023 J 0.014 J 0.035 0.067 < 0.067 < 0.066 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.06						<			~			~			<					~			
Thallum 7440-28-0 0.78 12 < 2.06 < 2.0 < 2.2 < 2.0 < 2.0.8 < 2.0.8 < 2.0.2 < 2.0.4 < 2.0.8 < 2.0.8 < 2.0.2 < 2.0.8 < 2.0.8 < 2.0.2 < 2.0.8 < 2.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 < 4.0.2 <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>;</td> <td></td>													-									;	
Vanadum 7440-62-3 460 8400 7.8 7.1 7.33 7.94 8.38 14 12.6 14.0 2nc 7439-7-5 3.1 3.10 0.044 J 0.135 0.074 J 0.083 J 0.023 J 0.144 0.02 SVOC (mgMg) - - 0.067 <								*			*			*			*						*
Znc 7440-66-6 23000 35000 28.5 97.5 74.8 49.1 67.5 66.5 33.3 33.1 39.2 Weruy 7439-97-6 3.1 0.044 J 0.135 0.074 J 0.066 J 0.067 J 0.023 J 0.044 0.02 SVGCs (mgkg) Accmaphtylene 283-2.9 4100 47000 C 0.067 C 0.066 C 0.077 C 0.066 C 0.074 J 0.434 C 0.067																						ı	
Intercuity 7439-97-6 3.1 3.1 0.044 J 0.037 J 0.088 J 0.023 J 0.023 J 0.014 0.023 J 0.026 C 0.066 C 0.067 C 0.068 C 0.067 C 0.066 C 0.067																							
SVOC (mg/kg) Accmaphtheme 83-32-9 4100 47000 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.074 J 0.434 < 0.067 < 0.066 < 0.074 J 0.434 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.067 < 0.067 < 0.066 < 0.067 < </td <td></td>																							
Accenaphtmene 83.32.9 4100 47000 < 0.067 < 0.066 < 0.067 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.066 < 0.067 < 0.066 < 0.066 < 0.066 < 0.066 < 0.066 < 0.066 < 0.066 < 0.066 < 0.066 < 0.066 < 0.066 < 0.067 < 0.066 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.067 < 0.066 < 0.067 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067		7439-97-0	5.1	5.1	0.044 J		0.155			0.074	J		0.000	5		0.003	5	0.025 0	0.144		0.02	<u> </u>	4
Accessphilylene 208-96.8 4200 51000 < 0.077 < 0.066 < 0.0767 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.067 < 0.066 < 0.077 J 0.434 < 0.067 < 0.068 < 0.067 < 0.068 < 0.067 < 0.068 < 0.067 < 0.068 < 0.067 < 0.068 < 0.067 < 0.068 < 0.067 < 0.066 < 0.067 < 0.067 < 0.067 < 0.066 < 0.066 < 0.066 < 0.066 < 0.066 < 0.066 < 0.066 < 0.066 < 0.066 < 0.066 < 0.066 < 0.066 < <th0.066< th=""> < 0.066</th0.066<>		83-32-0	4100	47000	< 0.067	<	0.066		~	0.066		~	0.067		<	0.066		< 0.067	< 0.066	~	0.06	7	
Anthracene 120-12-7 23000 350000 < 0.067 < 0.066 < 0.067 < 0.066 0.067 < 0.066 < 0.074 J 0.046 < 0.066 0.074 J 0.043 < 0.067 < 0.066 0.074 J 0.436 < 0.067 < 0.066 < 0.074 J 0.436 < 0.067 < 0.066 < 0.074 J 0.067 < 0.066 < 0.074 J 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.067 < 0.066 < 0.067 < 0.067 < 0.066 < 0.067 < 0.067 < 0.067 <	•																						
Benzolalanthracene 56-55-3 1.5 320 < 0.067 0.099 J < 0.066 0.074 J 0.436 < 0.067 < 0.066 < 0.067 < 0.067 < 0.066 < 0.067 J 0.033 0.436 < 0.067 < 0.066 < 0.067 J 0.033 J < 0.067 < 0.066 < 0.067 < 0.067 < 0.066 < 0.067 J 0.033 J < 0.067 < 0.066 < 0.067 < 0.067 < 0.066 < 0.067 J < 0.067 < 0.066 < 0.066 < 0.066 < 0.066 J <																							
Benzolajpyrene 50-328 0.11 21 < 0.067 * 0.086 * 0.074 J 0.434 < 0.067 * < 0.066 * 0.094 J 0.434 < 0.067 * < 0.066 * 0.094 J 0.096 * 0.0112 J 0.434 0.637 * 0.066 * 0.006 * 0.007 0.0112 J 0.434 0.637 < 0.067 < 0.066 * 0.067 0.0112 J 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.066 < 0.067 < 0.067 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 0.076 0.066<								.1						.1									
BenzolpTuoranthene 205-99-2 1.1 210 < 0.067 < 0.066 0.112 J 0.63 < 0.067 < 0.066 0.063 < 0.067 < 0.066 < 0.067 0.017 J < 0.066 < 0.067 < 0.066 < 0.067 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067								-			*			-									*
Benzolg.h.jberylene 191-24-2 1800 23000 < 0.067 < 0.066 < 0.066 < 0.013 J < 0.067 < 0.066 < 0.067 0.015 J < 0.0175 J < 0.067 < 0.066 < 0.067 0.015 J < 0.067 J < 0.067 < 0.066 < 0.067 0.015 J < 0.066 < 0.066 < 0.066 J 0.067 J								-						.1									
Benzok/filuranthene 207-08-9 11 2100 < 0.067 < 0.066 < 0.066 < 0.067 0.175 J < 0.067 < 0.068 < 0.067 < 0.067 < 0.066 < 0.067 < 0.067 < 0.066 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.066 < 0.067 < 0.077 < 0.067 < 0.066 < 0.066 < 0.066 < 0.066 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.066 < 0.066 < 0.066 < 0.066 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.066 < 0.066 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.066 < 0.067 < 0.067 < 0.066 < 0.067 < 0.067 < 0.066 < 0.067 < 0.067 < 0.067 < 0.066 < 0.067 < 0.067 < 0.067 < 0.067 <						<		Ũ				<		Ũ			.1						
Chrysene 218-01-9 110 21000 < 0.067 0.115 J < 0.066 < 0.092 J 0.498 < 0.067 < 0.066 < < 0.067 < 0.067 < 0.066 < < 0.067 < 0.067 < 0.066 < < 0.067 < 0.067 < 0.066 < < 0.067 < 0.066 < < 0.067 < 0.066 < < 0.067 < 0.066 < < 0.066 < < 0.067 < 0.066 < < 0.067 < 0.066 < < 0.067 < 0.066 < 0.066 < 0.067 < 0.066 < 0.066 < 0.067 < 0.066 < 0.066 < 0.067 < 0.066 < 0.066 < 0.066 < 0.067 < 0.066 < 0.066 < 0.067 < 0.066 < 0.066 < 0.067 < 0.066 < 0.066 < 0.067 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.067 < 0.066 < 0.067 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.067 < 0.066 < 0.067 < 0.067 < 0.066 < 0.067 < 0.067 < 0.066 < 0.067 < 0.067 < 0.066 < 0.067 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>J</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																	J						
Dibenz(a,h)anthracene 53-70-3 0.11 21 < 0.067 * < 0.066 * < 0.067 * < 0.066 * < 0.067 * < 0.066 * < 0.067 * < 0.066 * < 0.067 * < 0.066 * < 0.066 * < 0.067 * < 0.066 * < 0.067 * < 0.066 * < 0.066 * < 0.067 * < 0.067 < 0.066 < 0.066 * < 0.067 * < 0.067 < 0.066 < 0.066 < 0.066 < 0.067 < 0.066 < 0.066 < 0.066 < 0.067 < 0.067 < 0.066 < 0.066 < 0.067 < 0.066 < 0.066 < 0.067 < 0.066 < 0.066 < 0.067 < 0.066 < 0.067 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.067 < 0.066 < 0.067 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.06								.1						.1			Ũ						
Fluoranthene 206-44-0 2400 30000 < 0.067 0.12 J < 0.066 0.154 J 0.83 < 0.067 < 0.066 < 0.066 Fluorene 86-73-7 2900 37000 < 0.067						<		*			*	<		*			.1			<			*
Fluorene 86-73-7 2900 37000 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.066 < 0.066 < 0.066 < 0.066 < 0.066 < 0.066 < 0.067 < 0.066 < 0.066 < 0.066 < 0.067 < 0.066 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.067								.1						.1			Ŭ						
Indeno[1,2,3-cd]pyrene 193-39-5 1.1 210 < 0.067 < 0.066 < 0.066 < 0.067 0.341 < 0.067 < 0.066 < 0.067 0.341 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.066 < 0.067 < 0.066 < 0.066 < 0.067 < 0.066 < 0.066 < 0.067 < 0.066 < 0.066 < 0.067 < 0.066 < 0.066 < 0.066 < 0.067 < 0.066 < 0.066 < 0.067 < 0.066 < 0.066 < 0.067 < 0.066 < 0.066 < 0.066 < 0.066 < 0.067 < 0.0229 J < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.0229 J < 0.067 < 0.066 < 0.067 < 0.0229 J < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.067 < 0.066 < 0.067 < 0.067 < 0.066 < 0.067 < 0.067 < 0.066 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td><</td> <td></td> <td>Ũ</td> <td></td> <td></td> <td></td> <td><</td> <td></td> <td>Ũ</td> <td><</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						<		Ũ				<		Ũ	<								
Naphthalene 91-20-3 2.4 110 < 0.067 < 0.066 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.029 J < 0.067 < 0.066 < 0.067 < 0.029 J < 0.067 < 0.066 < 0.067 < 0.029 J < 0.067 < 0.066 < 0.066 < 0.029 J < 0.067 < 0.066 < 0.066 < 0.029 J < 0.067 < 0.066 < 0.066 < 0.073 < 0.0108 < 0.073 < 0.0108 < 0.0473 < 0.066 < 0.017 < 0.0118 < 0.0113 < 0.0113 < 0.0113 < 0.0113 < 0.00137 < 0.00137 < 0.00137 < 0.00137 < 0.00137 < 0.00147 < 0.00154 < 0.00137 < 0.00133 < 0.0013 < 0.00137 < 0.00155 <						<			<			<								<			
Phenanthrene 67580 23000 350000 < 0.067 < 0.066 < 0.067 0.229 J < 0.067 < 0.066 < 0.067 0.125 J 0.0703 J < 0.066 < 0.067 < 0.066 < 0.029 J < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.067 < 0.066 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.067 < 0.0113 < 0.0113 < 0.0113 < 0.0113 < 0.0113 < 0.00157 <						<			<			<			<					<			
Pyrene 129-00-0 2300 34000 < 0.067 0.178 J < 0.066 0.125 J 0.703 < 0.067 < 0.066 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.066 < 0.025 J 0.703 < 0.067 < 0.066 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.066 < 0.066 < 0.067 < 0.066 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.066 < 0.067 < 0.066 < 0.067 < 0.066 < 0.013 < 0.0108 < 0.0103 < 0.0013 < 0.0013 < 0.00072 < 0.00072 < 0.00187 < 0.00175 < 0.00137 < 0.00137 < 0.00137 < 0.00137 < 0.00137 < 0.00137 < 0.00147 < 0.00155 < 0.00137 < 0.00137 < 0.00137 < 0.00137 < 0.00137 < 0.00137 < 0.00137 < 0.00137 < 0.00137 < 0.00137 < 0.00137 < 0.00137 < 0.00133 < 0.00137 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>J</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																	J						
VOCs (mg/Kg) Acetone 67-64-1 61000 110000 0.372 < 0.0108 < 0.0118 0.0963 0.13 < 0.0108 0.0473 < 0.010 Benzene 71-43-2 1.2 54 < 0.00132								Л						Л			Ū						
Aceton $67-64-1$ 61000 110000 0.372 < 0.0108 < 0.0118 0.0963 0.13 < 0.0108 0.0473 < 0.0108 Benzene $71-43-2$ 1.2 54 < 0.00132 < 0.001 < 0.00109 < 0.00108 < 0.00108 < 0.00113 < 0.0011 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000977 < 0.000797 < 0.00157 < 0.00137 < 0.00133 < 0.00197 < 0.00197 < 0.00197 < 0.00137 < 0.00197 < 0.00137 < 0.00137 < 0.00137 < 0.00137 < 0.00137 < 0.00137 < 0.00137 < 0.00137 < 0.00137 < 0.00137 < 0.00137 < 0.00137 < 0.00137 < 0.00137 < 0.00137 < 0.00137 < 0.00137 < 0.00137 < 0.00137 < 0.00137 $< 0.$		120 00 0	2000	01000	0.001		0.170	0		0.000			0.120	Ū		0.100		0.001	0.000		0.00		_
Benzene 71-43-2 1.2 54 < 0.00132 < 0.001 < 0.00109 < 0.00108 < 0.00113 < 0.001 < 0.000977 < 0.000977 < 0.000977 < 0.00108 Carbon disulfide 75-15-0 740 740 < 0.00951		67-64-1	61000	110000	0 372	<	0 0108		<	0 0118			0 0963			0 13		< 0.0108	0.0473	<	0.010)7	
Carbon disulfide 75-15-0 740 740 < 0.00951 < 0.0072 < 0.00785 < 0.00775 < 0.00812 0.0459 < 0.00702 < 0.0072 < 0.0072 Ethylbenzene 100-41-4 6.2 270 < 0.00181															<								
Ethylbenzene 100-41-4 6.2 270 < 0.00181 < 0.00137 < 0.00149 < 0.00147 < 0.00154 < 0.00137 < 0.00133 < 0.00132 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.0013																							
2-Hexanone ⁽¹⁾ 591-78-6 3400 3400 < 0.0205 < 0.0155 < 0.0169 < 0.0167 < 0.0175 < 0.0155 < 0.0151 < 0.0175 4-Methyl-2-pentanone 108-10-1 3400 3400 < 0.0149																							
4-Methyl-2-pentanone 108-10-1 3400 3400 < 0.0149 < 0.0113 < 0.0123 < 0.0128 < 0.0113 < 0.011 < 0.011 < 0.011 MTBE 1634-04-4 50 2200 < 0.00859	-																						
MTBE 1634-04-4 50 2200 < 0.00859 < 0.0065 < 0.00708 < 0.00733 < 0.0065 < 0.00633 < 0.00633 < 0.00633 < 0.00633 < 0.00633 < 0.00633 < 0.00133 < 0.00136 < 0.00136 < 0.00136 < 0.00136 < 0.00136 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133 < 0.00133																							
Toluene 108-88-3 820 820 0.00452 < 0.00136 < 0.00148 < 0.00146 0.0029 J < 0.00136 < 0.00133 < 0.001 1,2,4-Trimethylbenzene 95-63-6 220 20 < 0.00187																							
1,2,4-Trimethylbenzene 95-63-6 220 220 < 0.00187 < 0.00142 < 0.00155 < 0.00153 < 0.0016 < 0.00142 < 0.00142 < 0.00138 < 0.00142																							
															<		5						
	-																						
m,p-Xylene ⁽¹⁾ 1330-20-7 260 260 < 0.00349 < 0.00265 < 0.00288 < 0.00285 < 0.00299 < 0.00265 < 0.00258 < 0.002	-																						

		Screening	Criteria ⁽¹⁾				Sample Inf	ormation ⁽²⁾			
		WVDEP De Minimis Value for Residential Soil	WVDEP De Minimis Value for Industrial Soil	SS-31-CORE Investigation 1/17/2019	SS-32-CORE Investigation 1/17/2019	SS-33-CORE Investigation 1/17/2019	SS-34-CORE Investigation 1/17/2019	SS-35-CORE Investigation 1/17/2019	SS-36-CORE Investigation 1/17/2019	SS-37-CORE Investigation 1/17/2019	SS-38-CORE Investigation 1/17/2019
Constituent	CAS No.			0-2 ft. bgs							
Metals (mg/kg)	1				-		-	-	-		-
Aluminum	7429-90-5	77000	1000000	2430	3680	4130	6890	5940	5970	5690	4460
Antimony	7440-36-0	31	470	< 2	< 2	< 2	< 2.04	< 2	< 2.04	< 2	< 2.08
Arsenic ⁽¹⁾	7440-38-2	13.1	30	< 2 *	< 2 *	< 2 *	7.15	5.58	12.4	7.02	2.76 J
Barium	7440-39-3	15000	220000	31.9	26.3	49	75.7	81.2	277	49	42.2
Beryllium	7440-41-7	160	2300	0.33 J	0.335 J	0.285 J	0.556	0.585	0.827	0.485 J	0.49 J
Cadmium	7440-43-9	37	530	0.26 J	0.285 J	0.31 J	0.856 J	0.785 J	1.22	0.72 J	0.443 J
Chromium ⁽¹⁾	16065-83-1	120000	1000000	3.72 J	4.82 J	6.48	14.6	10.2	11.1	10.5	8.89
Cobalt	7440-48-4	23	350	3.31 J	4.33 J	6.54	9.94	8.76	11.6	9.32	6.15
Copper	7440-50-8	3100	47000	5.05	5.75	8.67	40.4	34.4	41.9	21.5	14.3
Lead	7439-92-1	400	800	8.41	8.01	6.98	58.4	51.8	63.7	34	21.6
Manganese	7439-96-5	1800	26000	179	176	278	378	410	534	332	90.8
Nickel	7440-02-0	1500	22000	6.85	5.24	6.19	11.5	11.3	23.4	12.1	11.1
Selenium	7782-49-2	390	5800	< 3	< 3	< 3	< 3.06	< 3	< 3.06	< 3	< 3.12
Silver	7440-22-4	390	5800	< 0.35	< 0.35	< 0.35	< 0.357	< 0.35	< 0.357	< 0.35	< 0.365
Thallium	7440-28-0	0.78	12	< 2 *	< 2 *	< 2 *	< 2.04 *	< 2 *	< 2.04 *	< 2 *	< 2.08
Vanadium	7440-62-2	460	8400	4.02 J	5.25	6.31	13.9	10.3	8.26	11.4	9.54
Zinc	7440-66-6	23000	350000	19.5	21.2	24.9	55.9	64.9	117	60.5	43.3
Mercury	7439-97-6	3.1	3.1	0.035 J	0.031 J	0.023 J	0.113	0.065	0.084 J	0.085 J	0.055 J
SVOCs (mg/kg)											
Acenaphthene	83-32-9	4100	47000	< 0.066	< 0.067	< 0.067	< 0.066	< 0.066	< 0.067	< 0.067	< 0.066
Acenaphthylene	208-96-8	4200	51000	< 0.066	< 0.067	< 0.067	0.147 J	0.162 J	< 0.067	< 0.067	< 0.066
Anthracene	120-12-7	23000	350000	< 0.066	< 0.067	< 0.067	0.149 J	0.113 J	< 0.067	< 0.067	< 0.066
Benzo[a]anthracene	56-55-3	1.5	320	< 0.066	< 0.067	< 0.067	0.246 J	0.387	0.09 J	< 0.067	< 0.066
Benzo[a]pyrene	50-32-8	0.11	21	< 0.066 *	< 0.067 *	< 0.067 *	0.215 J	0.362	0.073 J	< 0.067 *	< 0.066 *
Benzo[b]fluoranthene	205-99-2	1.1	210	< 0.066	< 0.067	< 0.067	0.655	0.561	0.099 J	< 0.067	< 0.066
Benzo[g,h,i]perylene	191-24-2	1800	23000	< 0.066	< 0.067	< 0.067	0.318 J	0.284 J	< 0.067	< 0.067	< 0.066
Benzo[k]fluoranthene	207-08-9	11	2100	< 0.066	< 0.067	< 0.067	0.149 J	0.134 J	< 0.067	< 0.067	< 0.066
Chrysene	218-01-9	110	21000	< 0.066	< 0.067	< 0.067	0.353	0.472	0.099 J	< 0.067	< 0.066
Dibenz(a,h)anthracene	53-70-3	0.11	21	< 0.066 *	< 0.067 *	< 0.067 *	0.097 J	0.078 J	< 0.067 *	< 0.067 *	< 0.066 *
Fluoranthene	206-44-0	2400	30000	< 0.066	< 0.067	< 0.067	0.292 J	0.45	< 0.067	< 0.067	< 0.066
Fluorene	86-73-7	2900	37000	< 0.066	< 0.067	< 0.067	< 0.066	< 0.066	< 0.067	< 0.067	< 0.066
Indeno[1,2,3-cd]pyrene	193-39-5	1.1	210	< 0.066	< 0.067	< 0.067	0.383	0.299 J	< 0.067	< 0.067	< 0.066
Naphthalene	91-20-3	2.4	110	< 0.066	< 0.067	< 0.067	0.137 J	0.095 J	< 0.067	< 0.067	< 0.066
Phenanthrene	67580	23000	350000	< 0.066	< 0.067	< 0.067	0.145 J	0.228 J	< 0.067	< 0.067	< 0.066
Pyrene	129-00-0	2300	34000	< 0.066	< 0.067	< 0.067	0.393	0.679	0.146 J	< 0.067	0.099 J
VOCs (mg/Kg)											
Acetone	67-64-1	61000	110000	0.0827	0.0954	0.0909	0.0808	0.0752	0.0648	0.0619	0.0962
Benzene	71-43-2	1.2	54	< 0.00122	< 0.00128	< 0.0012	< 0.00128	< 0.00127	0.0102	< 0.00118	< 0.00103
Carbon disulfide	75-15-0	740	740	< 0.00877	< 0.00923	< 0.00859	< 0.00923	< 0.00914	< 0.00905	< 0.00849	< 0.00739
Ethylbenzene	100-41-4	6.2	270	< 0.00167	< 0.00175	< 0.00163	< 0.00175	< 0.00174	< 0.00172	< 0.00161	< 0.0014
2-Hexanone ⁽¹⁾	591-78-6	3400	3400	< 0.0189	< 0.0199	< 0.0185	< 0.0199	< 0.0197	< 0.0195	< 0.0183	< 0.0159
4-Methyl-2-pentanone	108-10-1	3400	3400	< 0.0138	< 0.0145	< 0.0135	< 0.0145	< 0.0144	< 0.0142	< 0.0133	< 0.0116
MTBE	1634-04-4	50	2200	< 0.00792	< 0.00834	< 0.00775	< 0.00834	< 0.00825	< 0.00817	< 0.00767	< 0.00667
Toluene	108-88-3	820	820	< 0.00166	< 0.00174	< 0.00162	< 0.00174	< 0.00173	0.00636	< 0.0016	< 0.0014
1,2,4-Trimethylbenzene	95-63-6	220	220	< 0.00173	< 0.00182	< 0.00169	< 0.00182	< 0.0018	< 0.00191	< 0.00167	< 0.00145
o-Xylene ⁽¹⁾	1330-20-7	260	260	< 0.00152	< 0.0016	< 0.00149	< 0.0016	< 0.00158	< 0.00157	< 0.00147	< 0.00128
m,p-Xylene ⁽¹⁾	1330-20-7	260	260	< 0.00322	< 0.00339	< 0.00316	< 0.00339	< 0.00336	< 0.00333	< 0.00312	< 0.00271

Notes:

1-Screening criteria are the De Minimis Values from West Virginia 60CSR9 (Effective December 2, 2021). Double dashes indicate that a De Minimis Value is not available for a given constituent. Notes regarding specific values for various chemicals (e.g., surrogates used, effects basis, etc.) are as follows:

The residential screening criteria for arsenic is based on the 90th percentile background concentrations in West Virginia soils published by USGS (2013). Screening criteria for chromium are based on the screening criteria for chromium (III). Screening criteria for m,p-xylene and o-xylene are based on the screening criteria for total xylenes. Screening criteria for 2-Hexanone are based on the screening criteria for 4-Methyl-2-pentanone.

- 2-General sample information provided in column headings includes sample identification number. sampling date, and depth interval sampled. Table qualifier codes are as follows are as follo
 - J Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the reported concentration is an approximate value.
 - * The laboratory Method Detection Limit exceeds one or more Screening Criteria for the associated analyte.

Other Notes:

NA Not Analyzed

Shading indicates an exceedance of the Residential De Minimis value.

Bold italics numbers indicate an exceedance of the Industrial Soil De Minimis Value.

		Screening	Criteria ⁽¹⁾					Sample Information ⁽²	2)			
		WVDEP	WVDEP	SB-1-CORE	Duplicate-2 (Duplicate of SB- 1-CORE)	SB-3-CORE	SB-4-CORE	SB-5-CORE	SB-6-CORE	Duplicate-3 (Duplicate of SB- 6-CORE)	SB-7-CORE	SB-11-CORE
		De Minimis Value for Residential Soil	De Minimis Value for Industrial Soil	Investigation 01/14/19	Duplicate 01/14/19	Investigation 01/14/19	Investigation 01/14/19	Investigation 01/14/19	Investigation 01/15/19	Duplicate 01/15/19	Investigation 01/15/19	Investigation 01/15/19
Constituent	CAS No.			12-13 ft. bgs	12-13 ft. bgs	4-6 ft. bgs	4-6 ft. bgs	4-6 ft. bgs	4-6 ft. bgs	4-6 ft. bgs	10-12 ft. bgs	8-10 ft. bgs
Metals (mg/Kg)	7400 00 5	77000	100000	0700	0000	1000	0700	0000	5000	5000	50.40	1000
Aluminum	7429-90-5	77000	1000000	3700	3080	4890	6730	6300	5260	5600	5640	4260
Antimony	7440-36-0	31	470	< 2.02	< 2.02	< 2.04	< 2.02	< 2	< 2.06	< 2.02	< 2.08	< 2
Arsenic ⁽¹⁾	7440-38-2	13.1	30	2.65 J	2.19 J	5.94	6.01	7.89	5.38	7.36	3.43 J	2.8 J
Barium	7440-39-3	15000	220000	26.2	18.5	26	41.9 0.404 .1	34.1	24.3	28.2	34.6	24.5
Beryllium	7440-41-7	160	2300	0.343 J	0.273 J	0.383 J	0.101 0	0.485 J	0.356		0.396 J	0.35 J 0.245 J
	7440-43-9 10005-83-	37	530	0.227 J	0.313 J	0.454 J	0.100 0	0.54 J	0.402 J		0.349 J	0.2.10
Chromium ⁽¹⁾	1	120000	1000000	7.99	5.88	7.9	9.71	11.4	8.56	9.26	8.03	6.88
Cobalt	7440-48-4	23	350	4.63 J	4.3 J	5.65	9.09	12.8	5.93	13	6.61	6.29
Copper	7440-50-8	3100	47000	7.13	6.69	17.3	13.8	16.6	14.6	18.2	10.6	8.24
Lead	7439-92-1	400	800	6.36	5.12	31.4	35.7	11.4	8.11	11.9	20	6.61
Manganese	7439-96-5	1800	26000	290 5 70	300	160	175	261	175	547	201	212
Nickel	7440-02-0	1500	22000	5.79	5.39	9.18	10.2	13.6	10.7	11.5	8.02	6.66
Selenium	7782-49-2	390	5800	< 3.03	< 3.03	< 3.06	< 3.03	< 3	< 3.09	< 3.03	< 3.12	< 3
Silver	7440-22-4	390	5800	< 0.354	< 0.354	< 0.357	< 0.354	< 0.35	< 0.361	< 0.354	< 0.365	< 0.35
Thallium	7440-28-0	0.78	12	< 2.02 *	< 2.02 *	< 2.04 *	< 2.02 *	< 2 *	< 2.00	< 2.0Z	< 2.00	< 2 *
Vanadium ⁽¹⁾	7440-62-2	460	8400	7.43	6.86	11.5	14.3	13.8	11.7	14.7	12	9.28
Zinc	7440-66-6	23000	350000	23.1	21.2	37.8	47.6	42.6	30.4	34.2	33.7	23.8
Mercury	7439-97-6	3.1	3.1	0.025 J	0.02 J	0.033 J	5.38	0.055 J	0.046 J	J 0.025 J	0.035 J	0.028 J
SVOCs (mg/Kg)		4400	17000	0.007	0.007	0.007	0.007		0.007	0.007	0.007	0.007
Acenaphthene	83-32-9	4100	47000	< 0.067	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067	< 0.067	< 0.067	< 0.067
Acenaphthylene	208-96-8	4200	51000	< 0.067	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067	< 0.067	< 0.067	< 0.067
Anthracene	120-12-7	23000	350000	< 0.067	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067	< 0.067	< 0.067	< 0.067
Benzo[a]anthracene	56-55-3	1.5	320	< 0.067	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067	< 0.067	< 0.067	< 0.067
Benzo[a]pyrene	50-32-8	0.11	21	< 0.067 *	< 0.067 *	< 0.067 *	< 0.067 *	< 0.066 *	< 0.067 *	< 0.007	< 0.067 *	< 0.067 *
Benzo[b]fluoranthene	205-99-2	1.1	210	< 0.067	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067	< 0.067	< 0.067	< 0.067
Benzo[g,h,i]perylene	191-24-2	1800	23000	< 0.067	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067	< 0.067	< 0.067	< 0.067
Benzo[k]fluoranthene	207-08-9	11	2100	< 0.067	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067	< 0.067	< 0.067	< 0.067
Chrysene	218-01-9	110	21000	< 0.067	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067	< 0.067	< 0.067	< 0.067
Dibenz(a,h)anthracene	53-70-3	0.11	21	< 0.067 *	< 0.067 *	< 0.067 *	< 0.067 *	< 0.066 *	< 0.067 *	< 0.067 *	< 0.067 *	< 0.067 *
Fluoranthene	206-44-0	2400	30000	< 0.067	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067	< 0.067	< 0.067	< 0.067
Fluorene	86-73-7	2900	37000	< 0.067	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067	< 0.067	< 0.067	< 0.067
Indeno[1,2,3-cd]pyrene	193-39-5	1.1	210	< 0.067	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067	< 0.067	< 0.067	< 0.067
Naphthalene	91-20-3	2.4	110	< 0.067	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067	< 0.067	< 0.067	< 0.067
Phenanthrene	67580	23000	350000	< 0.067	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067	< 0.067	< 0.067	< 0.067
Pyrene	129-00-0	2300	34000	< 0.067	< 0.067	< 0.067	< 0.067	< 0.066	< 0.067	< 0.067	< 0.067	< 0.067
VOCs (mg/Kg)	07.04.4	01000	110000	0.0000	0.0404	0.0000	0.0000	0.0000	0.000	0.0111	0.0510	0.0040
Acetone	67-64-1	61000	110000	0.0962	0.0481	0.0208 J	0.0238 J	0.0322	0.036	< 0.0111	0.0513	0.0319
Benzene	71-43-2	1.2	54	< 0.000925	< 0.001	< 0.000925	< 0.000989	< 0.00102	< 0.000964	< 0.00103	< 0.000938	< 0.000964
Carbon disulfide	75-15-0	740	740	< 0.00665	< 0.0072	< 0.00665	< 0.00711	< 0.00729	< 0.00692	< 0.00739	< 0.00674	< 0.00692
	100-41-4	6.2	270	< 0.00126	< 0.00137	< 0.00126	< 0.00135	< 0.00138	< 0.00131	< 0.0014	< 0.00128	< 0.00131
2-Hexanone ⁽¹⁾	591-78-6	3400	3400	< 0.0143	< 0.0155	< 0.0143	< 0.0153	< 0.0157	< 0.0149	< 0.0159	< 0.0145	< 0.0149
4-Methyl-2-pentanone	108-10-1	3400	3400	< 0.0104	< 0.0113	< 0.0104	< 0.0112	< 0.0115	< 0.0109	< 0.0116	< 0.0106	< 0.0109
MTBE	1634-04-4	50	2200	< 0.006	< 0.0065	< 0.006	< 0.00642	< 0.00658	< 0.00625	< 0.00667	< 0.00608	< 0.00625
Toluene	108-88-3	820	820	< 0.00126	< 0.00136	< 0.00126	< 0.00134	< 0.00138	< 0.00131	< 0.0014	< 0.00127	< 0.00131
1,2,4-Trimethylbenzene	95-63-6	220	220	< 0.00131	< 0.00142	< 0.00131	< 0.0014	< 0.00144	< 0.00136	< 0.00145	< 0.00133	0.00243 J
o-Xylene ⁽¹⁾	1330-20-7	260	260	< 0.00115	< 0.00125	< 0.00115	< 0.00123	< 0.00126	< 0.0012	< 0.00128	< 0.00117	< 0.0012
m,p-Xylene ⁽¹⁾	1330-20-7	260	260	< 0.00244	< 0.00265	< 0.00244	< 0.00261	< 0.00268	< 0.00254	< 0.00271	< 0.00248	0.00355 J

		Screening	Criteria ⁽¹⁾							San	nple Information ⁽²	2)									
					Duplicate-2		00 40 0005		00 44 0005						00 47 000	-			_		D 40 00DE
		WVDEP	WVDEP	SB-12-CORE	(Duplicate of SB 12-CORE)	-	SB-13-CORE		SB-14-CORE		SB-15-CORE		SB-16-CORE		SB-17-CORE	-	5	B-18-CORE	=	5	B-19-CORE
		De Minimis Value for Residential Soil	De Minimis Value for Industrial Soil	Investigation	Duplicate		Investigation		Investigation		Investigation	1	Investigation		Investigation	ı	In	vestigatio	n	Ir	nvestigation
Constituent	CAS No.			01/16/19 4-5 ft. bgs	01/16/19 4-5 ft. bgs		01/16/19 4-5 ft. bgs		01/16/19 4-5 ft. bgs		01/16/19 4-5 ft. bgs		01/16/19 2-4 ft. bgs		01/16/19 2-4 ft. bgs			01/16/19 2-4 ft. bgs			01/16/19 4-5 ft. bgs
Constituent	CAS NO.			4-5 It. bys	4-5 IL D <u>y</u> s		4-5 It. bys	-	4-5 II. bys		4-5 It. bys		2-4 n. bys		2-4 II. bys			2-4 n. bys			4-5 It. bys
Metals (mg/Kg) Aluminum	7429-90-5	77000	1000000	7430	5340		1610		3110		5240		4890		6220			10900			5470
Antimony	7440-36-0	31	470	< 2	< 2		< 2.02	<		<	2.02	<	2		< 2		<	2.08		<	2.04
Arsenic ⁽¹⁾	7440-38-2	13.1	30	2.22 J		J	3.51 J			<	2.02	<	2		< 2			10		-	2.68 J
Barium	7440-39-3	15000	220000	2.91	28.3	Ŭ	61.5		35.6		36.5		44.7		77.8			88			68.4
Beryllium	7440-41-7	160	2300	0.405 J		J	0.424 J			J	0.242 J			J	0.52			0.594			0.383 J
Cadmium	7440-43-9	37	530	< 0.2	< 0.2	•	0.288 J			J <	0.202			-	< 0.2			0.51	J		0.403 J
Chromium ⁽¹⁾	10000-03-	120000	1000000	9.73	10.5		6.76		8.24	Ū	5.63		6.61	-	6.08			16.3	Ū		8.62
Cobalt	1 7440-48-4	23	350	4.47 J	6.02		5.54		3.48	J	5.43		5.54		5.57			10.8			7.01
Copper	7440-50-8	3100	47000	12.7	13.3		9.9		9.04	-	10.2		18.2		7.78			44.3			20.4
Lead	7439-92-1	400	800	7.6	8.86		17.3		1030		742		81		5.94			135			189
Manganese	7439-96-5	1800	26000	130	183		299		199		142	1	229		173			555			346
Nickel	7440-02-0	1500	22000	6.64	7.26		7.96			J	4.99		7.54		8.22			21.6			9.18
Selenium	7782-49-2	390	5800	< 3	< 3		< 3.03	<		<	3.03	<	3		< 3		<	3.13		<	3.06
Silver	7440-22-4	390	5800	< 0.35	< 0.35		< 0.354	<		<	0.354	<	0.35		< 0.35		<	0.365		<	0.357
Thallium	7440-28-0	0.78	12	< 2 *		*	< 2.02 *	<		* <	2.02 *	<	2	*	< 2	*	<	2.08	*	<	2.04 *
Vanadium ⁽¹⁾	7440-62-2	460	8400	14	13.7		9.02		6.87		13.3		9.41		8.97			26			12.5
Zinc	7440-66-6	23000	350000	30.8	32.6		29.1		145		67.4		138		31.9			136			146
Mercury	7439-97-6	3.1	3.1	0.037 J		J	0.027 J		0.044	J	0.026 J		0.023	J	0.023	J		0.079	J		0.482
SVOCs (mg/Kg)		-				-				-				-					-		
Acenaphthene	83-32-9	4100	47000	< 0.066	< 0.067		< 0.066	<	0.067		0.208 J	<	0.067		< 0.067		<	0.067		<	0.067
Acenaphthylene	208-96-8	4200	51000	< 0.066	< 0.067		< 0.066	<	0.067	<	0.067	<	0.067		< 0.067		<	0.067		<	0.067
Anthracene	120-12-7	23000	350000	< 0.066	< 0.067		< 0.066	<	0.067		0.545	<	0.067		< 0.067		<	0.067		<	0.067
Benzo[a]anthracene	56-55-3	1.5	320	< 0.066	< 0.067		< 0.066		0.204	J	2.09		0.37		< 0.067		<	0.067		<	0.067
Benzo[a]pyrene	50-32-8	0.11	21	< 0.066 *	< 0.067	*	< 0.066 *		0.264	J	1.67		0.34		< 0.067	*	<	0.067	*	<	0.067 *
Benzo[b]fluoranthene	205-99-2	1.1	210	< 0.066	< 0.067		< 0.066		0.369		2.34		0.504		< 0.067		<	0.067		<	0.067
Benzo[g,h,i]perylene	191-24-2	1800	23000	< 0.066	< 0.067		< 0.066		0.25	J	0.956		0.208	J	< 0.067		<	0.067		<	0.067
Benzo[k]fluoranthene	207-08-9	11	2100	< 0.066	< 0.067		< 0.066		0.124	J	0.829		0.144	J	< 0.067		<	0.067		<	0.067
Chrysene	218-01-9	110	21000	< 0.066	< 0.067		< 0.066		0.268	J	1.95		0.348		< 0.067		<	0.067		<	0.067
Dibenz(a,h)anthracene	53-70-3	0.11	21	< 0.066 *	< 0.067	*	< 0.066 *	<	0.067	*	0.286 J	<	0.067		< 0.067	*	<	0.067	*	<	0.067 *
Fluoranthene	206-44-0	2400	30000	< 0.066	< 0.067		< 0.066		0.547		5.16		0.645		< 0.067		<	0.067		<	0.067
Fluorene	86-73-7	2900	37000	< 0.066	< 0.067		< 0.066	<	0.067		0.144 J	<	0.067		< 0.067		<	0.067		<	0.067
Indeno[1,2,3-cd]pyrene	193-39-5	1.1	210	< 0.066	< 0.067		< 0.066		0.266	J	1.21		0.26	J	< 0.067		<	0.067		<	0.067
Naphthalene	91-20-3	2.4	110	< 0.066	< 0.067		< 0.066	<	0.067		0.074 J	<	0.067		< 0.067		<	0.067		<	0.067
Phenanthrene	67580	23000	350000	< 0.066	< 0.067		< 0.066		0.299	J	2.19		0.199	J	< 0.067		<	0.067		<	0.067
Pyrene	129-00-0	2300	34000	< 0.066	< 0.067		< 0.066		0.457		3		0.51		< 0.067		<	0.067		<	0.067
VOCs (mg/Kg)																					
Acetone	67-64-1	61000	110000	< 0.0113	< 0.0107		< 0.0122	<	0.0129	<	0.0107		0.164		0.0585		<	0.0107		<	0.0126
Benzene	71-43-2	1.2	54	< 0.00104	< 0.000989		0.00356	<	0.0012	<		<			< 0.00102			0.00379		<	0.00117
Carbon disulfide	75-15-0	740	740	0.042	0.026		< 0.00812	<	0.00859	<		<	0.00914		< 0.00729			0.0304		<	0.0084
Ethylbenzene	100-41-4	6.2	270	< 0.00142	< 0.00135		< 0.00154	<	0.00163	<		<	0.00174		< 0.00138		<	0.00135		<	0.0016
2-Hexanone ⁽¹⁾	591-78-6	3400	3400	< 0.0161	< 0.0153		< 0.0175		0.0185	<	010100	<	0.0197		< 0.0157		<	0.0153		<	0.0181
4-Methyl-2-pentanone	108-10-1	3400	3400	< 0.0117	< 0.0112		< 0.0128	<		<		<	0.0144		< 0.0115		<	0.0112		<	0.0132
МТВЕ	1634-04-4	50	2200	< 0.00675	< 0.00642		< 0.00733	<		<		<			< 0.00658		<	0.00642		<	0.00758
Toluene	108-88-3	820	820	< 0.00141	< 0.00134		0.00228 J	<		<			0.00368	J	< 0.00138			0.00204	J	<	0.00159
1,2,4-Trimethylbenzene	95-63-6	220	220	0.00311 J	< 0.0014		< 0.0016	<	0.00169	<	0.0014	<	0.0018		< 0.00144		<	0.0014		<	0.00165
o-Xylene ⁽¹⁾	1330-20-7	260	260	< 0.00129	< 0.00123		< 0.00141	<		<		<	0.00158		< 0.00126			0.00123		<	0.00145
m,p-Xylene ⁽¹⁾	1330-20-7	260	260	< 0.00275	< 0.00261		< 0.00299	<	0.00316	<	0.00261	<	0.00336		< 0.00268		<	0.00261		<	0.00309

		Screening	Criteria ⁽¹⁾									S	Sample Information ⁽²	2)									
		WVDEP De Minimis Value for	WVDEP De Minimis Value	SB-20-CORE		SB-21-CORE		s	B-22-CORE		SB-23-CORE		Duplicate-2 (Duplicate of SB- 23-CORE)	:	SB-24-CORE		SB-26-CORE		SI	B-27-COR	E	s	B-29-CORE
		Residential Soil	for Industrial Soil	Investigation 01/16/19		Investigation 01/16/19		Ir	vestigation 01/16/19		Investigation 01/17/19		Duplicate 01/17/19		Investigation 01/17/19		Investigation 01/17/19			vestigatio 01/17/19	n	Ir	vestigation 01/17/19
Constituent	CAS No.			4-5 ft. bgs		4-5 ft. bgs			2-4 ft. bgs		4-5 ft. bgs		4-5 ft. bgs		4-5 ft. bgs		4-5 ft. bgs			2-4 ft. bgs			4-5 ft. bgs
Metals (mg/Kg)																							
Aluminum	7429-90-5	77000	1000000	6340		5550			5800		8240		8660		5090		3780			4790			7740
Antimony	7440-36-0	31	470	< 2.06	<	2.04		<	2.06	<	2.02		< 2	<	2	<	2.08		<	2.04		<	2.02
Arsenic ⁽¹⁾	7440-38-2	13.1	30	4.51 J		5.2			2.79 J		5.32		5.18		5.54		2.31	J		2.57	J		4.89 J
Barium	7440-39-3	15000	220000	24.2		23.8			31.1		38.9		48.4		36.4		46.3			111			53.9
Beryllium	7440-41-7	160	2300	0.366 J		0.362	J		0.464 J		0.47	J	0.475 J		0.465 J		0.453	J		0.577			0.51
Cadmium	7440-43-9	37	530	< 0.206		0.23	J		0.325 J		0.601	J	0.685 J		0.55 J		0.365	J		0.469	J		0.465 J
Chromium ⁽¹⁾	10005-83-	120000	1000000	8.92		8.11			8.81		11.1		11.3		11.5		10.1			8.47			11
Cobalt	7440-48-4	23	350	6.51		8.05			7.52		6.99		5.78		7.31		8.55			9.16			9.63
Copper	7440-50-8	3100	47000	12.6		13.5			14.1		17.4		23.4		16.9	1	9.949			11.9			15.4
Lead	7439-92-1	400	800	8.47		8.37			9.27		12.2		14.4		15.2		9.35			11.7			13.7
Manganese	7439-96-5	1800	26000	251		271			298		123		107		147		323			442			211
Nickel	7440-02-0	1500	22000	8.02		9.2			7.72		12.7		12.1		12.1		10.9			11.7			11.6
Selenium	7782-49-2	390	5800	< 3.09	<	3.06		<	3.09	<	3.03		< 3	<	3	<	3.12		<	3.06		<	3.03
Silver	7440-22-4	390	5800	< 0.361	<			<	0.361	<	0.354		< 0.35	<	0.35	<	0.365		<	0.357		<	0.354
Thallium	7440-28-0	0.78	12	< 2.06 *	<	2.04	*	<	2.06 *	<	2.02	*	< 2 *	<	2 *	<	2.08	*	<	2.04	*	<	2.02 *
Vanadium ⁽¹⁾	7440-62-2	460	8400	13.9		12.3			12.3		13.6		13.8		9.7		5.77			7.24			13.4
Zinc	7440-66-6	23000	350000	30.2		31.9			148		39.2		38.6		37.9		42.8			37.6			35.2
Mercury	7439-97-6	3.1	3.1	0.034 J		0.025	J		0.033 J		0.046	J	0.046 J		0.02 J		0.031	J		0.032	J		0.053 J
SVOCs (mg/Kg)																							
Acenaphthene	83-32-9	4100	47000	< 0.067	<	0.067		<	0.066	<	0.066		< 0.066	<	0.066	<	0.067		<	0.066		<	0.066
Acenaphthylene	208-96-8	4200	51000	< 0.067	<	0.067		<	0.066	<	0.066		< 0.066	<	0.066	<	0.067		<	0.066		<	0.066
Anthracene	120-12-7	23000	350000	< 0.067	<	0.067		<	0.066	<	0.066		< 0.066	<	0.066	<	0.067		<	0.066		<	0.066
Benzo[a]anthracene	56-55-3	1.5	320	< 0.067	<	0.067		<	0.066	<	0.066		< 0.066	<	0.066	<	0.067			0.172	J	<	0.066
Benzo[a]pyrene	50-32-8	0.11	21	< 0.067 *	<	0.067	*	<	0.066 *	<	0.066	*	< 0.066 *	<	0.066 *	<	0.067	*		0.184	J	<	0.066 *
Benzo[b]fluoranthene	205-99-2	1.1	210	< 0.067	<	0.067		<	0.066	<	0.066		< 0.066	<	0.066	<	0.067			0.271	J	<	0.066
Benzo[g,h,i]perylene	191-24-2	1800	23000	< 0.067	<	0.067		<	0.066	<	0.066		< 0.066	<	0.066	<	0.067			0.145	J	<	0.066
Benzo[k]fluoranthene	207-08-9	11	2100	< 0.067	<	0.067		<	0.066	<	0.066		< 0.066	<	0.066	<	0.067			0.08	J	<	0.066
Chrysene	218-01-9	110	21000	< 0.067	<	0.067		<	0.066	<	0.066		< 0.066	<	0.066	<	0.067			0.195	J	<	0.066
Dibenz(a,h)anthracene	53-70-3	0.11	21	< 0.067 *	<	0.067	*	<	0.066 *	<	0.066	*	< 0.066 *	<	0.066 *	<	0.067	*	<	0.066	*	<	0.066 *
Fluoranthene	206-44-0	2400	30000	< 0.067	<	0.067		<	0.066	<	0.066		< 0.066	<	0.066	<	0.067			0.293	J	<	0.066
Fluorene	86-73-7	2900	37000	< 0.067	<	0.067		<	0.066	<	0.066		< 0.066	<	0.066	<	0.067		<	0.066		<	0.066
Indeno[1,2,3-cd]pyrene	193-39-5	1.1	210	< 0.067	<	0.067		<	0.066	<	0.066		< 0.066	<	0.066	<	0.067			0.152	J	<	0.066
Naphthalene	91-20-3	2.4	110	< 0.067	<			<	0.066	<	0.066		< 0.066	<	0.066	<	0.067		<	0.066		<	0.066
Phenanthrene	67580	23000	350000	< 0.067	<			<	0.066	<	0.066		< 0.066	<	0.066	<	0.067		<	0.066		<	0.066
Pyrene	129-00-0	2300	34000	< 0.067	<			<	0.066	<			< 0.066	<	0.066	<	0.067			0.248	J	<	0.066
VOCs (mg/Kg)					1					1						1							
Acetone	67-64-1	61000	110000	0.0479	<	0.0104			0.0552	<	0.0106		0.0321	<	0.0114		0.0732		<	0.0115		<	0.0104
Benzene	71-43-2	1.2	54	< 0.00102	<			<	0.000964	<	0.000977		< 0.00103	<	0.00105	<	0.00121		<	0.00107		<	0.000964
Carbon disulfide	75-15-0	740	740	< 0.00729	<			<	0.00692		0.00702		< 0.00739	<	0.00757	<	0.00868			0.00766		<	0.00692
Ethylbenzene	100-41-4	6.2	270	< 0.00138	<			<	0.00131	<			< 0.0014	<	0.00144	<	0.00165			0.00145		<	0.00131
2-Hexanone ⁽¹⁾	591-78-6	3400	3400	< 0.0157	<			<	0.0149	<			< 0.0159	<	0.0163	<	0.0187		<	0.0165		<	0.0149
4-Methyl-2-pentanone	108-10-1	3400	3400	< 0.0115	<			<	0.0109	<			< 0.0116	<	0.0119	<	0.0136		<	0.012		<	0.0109
MTBE	1634-04-4	50	2200	< 0.00658	<			<	0.00625	<			< 0.00667	<	0.00683	<	0.00783		<	0.00692		<	0.00625
Toluene	108-88-3	820	820	< 0.00138	<			<	0.00131	<			< 0.0014	<	0.00143	<	0.00164			0.00219	J	<	0.00131
1,2,4-Trimethylbenzene	95-63-6	220	220	< 0.00144	<			<	0.00136	<			< 0.00145	<	0.00149	<	0.00171			0.00151	-	<	0.00136
o-Xylene ⁽¹⁾	1330-20-7	260	260	< 0.00126	<			<	0.0012	<			< 0.00128	<	0.00131	<	0.0015			0.00133		<	0.0012
m,p-Xylene ⁽¹⁾	1330-20-7	260	260	< 0.00268	<			<	0.00254	<			< 0.00271	<		<	0.00319			0.00282		<	0.00254
		200	200	5.00200	<u> </u>	0.00207		<u> </u>		1	0.00200		0.00211	<u> </u>	0.00210	1	0.00010			2.00202		Ļ .	5.00201

		Screening	Criteria ⁽¹⁾			:	Sam	ole Informa	tion ⁽²	2)		
		WVDEP De Minimis Value for	WVDEP De Minimis Value	5	B-30-COR	E	5	B-31-COR	E	s	B-32-COR	E
		Residential Soil	for Industrial Soil	h	nvestigatio 01/17/19		l	nvestigatio 01/17/19	n		vestigatio 01/17/19	
Constituent	CAS No.				2-4 ft. bgs			4-5 ft. bgs			4-5 ft. bgs	
Metals (mg/Kg)	7400 00 5	77000	4000000		7000			2400			5700	
Aluminum	7429-90-5	77000	1000000		7930			3480			5780	
Antimony	7440-36-0	31	470	<	2		<	2		<	2.02	
Arsenic ⁽¹⁾	7440-38-2	13.1	30		4.65 45.7	J		2.87	J		2.2 30.8	J
Barium	7440-39-3	15000 160	220000					26.8				
Beryllium	7440-41-7	37	2300 530		0.495 0.52	J		0.38 0.22	J		0.475	J
Cadmium	7440-43-9 10005-83-	-				J			J		0.414	J
Chromium ⁽¹⁾	1	120000	1000000		12.1			6.98			8.41	
Cobalt	7440-48-4	23	350		8.54			6.34			8.84	
Copper	7440-50-8	3100	47000		15.5			7.6			11	
Lead	7439-92-1	400	800		11.6			6.12			8.82	
Manganese	7439-96-5	1800 1500	26000		251 12			179 6.92			290	
Nickel	7440-02-0		22000				_				8.21	
Selenium	7782-49-2	390	5800	<	3		<	3		<	3.03	
Silver	7440-22-4	390	5800	<	0.35	*	<	0.35	*	<	0.354	*
Thallium	7440-28-0	0.78	12	<	2	~	<	2	~	<	2.02	î
Vanadium ⁽¹⁾	7440-62-2	460	8400		13.9			6.56			9.34	
Zinc	7440-66-6	23000	350000		36.3			21			28.5	
Mercury	7439-97-6	3.1	3.1		0.033	J		0.023	J		0.028	J
SVOCs (mg/Kg)		1100	47000		0.000		_	0.007			0.000	
Acenaphthene	83-32-9	4100	47000	<	0.066		<	0.067		<	0.066	
Acenaphthylene	208-96-8	4200	51000	<	0.066		<	0.067		<	0.066	
Anthracene	120-12-7	23000	350000	<	0.066		<	0.067		<	0.066	
Benzo[a]anthracene	56-55-3	1.5	320	<	0.066		<	0.067		<	0.066	*
Benzo[a]pyrene	50-32-8	0.11	21	<	0.066	*	<	0.067	*	<	0.066	*
Benzo[b]fluoranthene	205-99-2	1.1	210	<	0.066		<	0.067		<	0.066	
Benzo[g,h,i]perylene	191-24-2	1800	23000	<	0.066		<	0.067		<	0.066	
Benzo[k]fluoranthene	207-08-9	11	2100	<	0.066		<	0.067		<	0.066	
Chrysene	218-01-9	110	21000	<	0.066		<	0.067		<	0.066	*
Dibenz(a,h)anthracene	53-70-3	0.11	21	<	0.066	*	<	0.067	*	<	0.066	*
Fluoranthene	206-44-0	2400	30000	<	0.066		<	0.067		<	0.066	
Fluorene	86-73-7	2900	37000	<	0.066		<	0.067		<	0.066	
Indeno[1,2,3-cd]pyrene	193-39-5	1.1	210	<	0.066		<	0.067		<	0.066	
Naphthalene	91-20-3	2.4	110	<	0.066		<	0.067		<	0.066	
Phenanthrene	67580	23000	350000	<	0.066		<	0.067		<	0.066	
Pyrene	129-00-0	2300	34000	<	0.066		<	0.067		<	0.066	
VOCs (mg/Kg)												
Acetone	67-64-1	61000	110000		0.108		<	0.0133		<	0.0108	
Benzene	71-43-2	1.2	54	<	0.00102		<	0.00123		<	0.001	
Carbon disulfide	75-15-0	740	740	<	0.00729		<	0.00886		<	0.0072	
Ethylbenzene	100-41-4	6.2	270	<	0.00138		<	0.00168		<	0.00137	
2-Hexanone ⁽¹⁾	591-78-6	3400	3400	<	0.0157		<	0.0191		<	0.0155	
4-Methyl-2-pentanone	108-10-1	3400	3400	<	0.0115		<	0.0139		<	0.0113	
MTBE	1634-04-4	50	2200	<	0.00658		<	0.008		<	0.0065	
Toluene	108-88-3	820	820	<	0.00138		<	0.00167		<	0.00136	
1,2,4-Trimethylbenzene	95-63-6	220	220	<	0.00144		<	0.00175		<	0.00142	
o-Xylene ⁽¹⁾	1330-20-7	260	260	<	0.00126		<	0.00153		<	0.00125	
m,p-Xylene ⁽¹⁾	1330-20-7	260	260	<	0.00268		<	0.00326		<	0.00265	

194-569 October 2022

Notes:

Screening criteria are the De Minimis Values from West Virginia 60CSR9 (Effective December 2, 2021). Double dashes indicate that a De Minimis Value is not available for a 1given constituent. Notes regarding specific values for various chemicals (e.g., surrogates used, effects basis, etc.) are as follows:

> The residential screening criteria for arsenic is based on the 90th percentile background concentrations in West Virginia soils published by USGS (2013). Screening criteria for chromium are based on the screening criteria for chromium (III). Screening criteria for m,p-xylene and o-xylene are based on the screening criteria for total xylenes. Screening criteria for 2-Hexanone are based on the screening criteria for 4-Methyl-2-pentanone.

2-General sample information provided in column headings includes sample identification number. sampling date, and depth interval sampled. Table qualifier codes are as follows: J Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the reported concentration is an approximate value. * The laboratory Method Detection Limit exceeds one or more Screening Criteria for the associated analyte.

Other Notes:

NA Not Analyzed

Shading indicates an exceedance of the Residential De Minimis value.

Bold italics numbers indicate an exceedance of the Industrial Soil De Minimis Value.

		Screening Criteria ⁽¹⁾							Sa	ample Informatio	on ⁽²⁾						
		WVDEP De Minimis Value for		MW-1	M	N-2		MW-3			MW-4		м	W-5		MW-6	
		Groundwater	1/28/2019	9/1/2020	1/28/2019	9/1/2020	1/28/2019	9/1/2020	Dup-1 9/1/2020 Duplicate	1/28/2019	FD-1 1/28/2019 Duplicate 1/28/2019	9/1/2020	1/28/2019	9/1/2020	1/28/2019	9/1/2020	9/1/2020 WVDEP Split Sample
Constituent	CAS No.				-						1/20/2019						Sample
PAHs (µg/L)		0.40															
Acenaphthene	83-32-9	240	NA	< 0.06	NA	< 0.06	NA	< 0.06	< 0.06	NA	NA	< 0.06	NA	< 0.06	NA	< 0.063	< 0.033
Acenaphthylene	208-96-8 120-12-7	240 1800	NA NA	< 0.06 < 0.045	NA NA	< 0.06 < 0.045	NA NA	< 0.06 < 0.045	< 0.06 < 0.045	NA NA	NA NA	< 0.06 < 0.045	NA NA	< 0.06 < 0.045	NA NA	< 0.063 < 0.047	< 0.049
Anthracene	56-55-3	0.03	NA	< 0.045	NA	< 0.045	NA	< 0.045		NA	NA	< 0.045	NA	< 0.045	NA	< 0.047	< 0.03 < 0.024
Benzo[a]anthracene	50-55-5 50-32-8	0.03	NA	< 0.069	NA	< 0.069	NA	< 0.069	< 0.069 < 0.049	NA	NA	< 0.069	NA	< 0.069 < 0.049	NA	< 0.072	< 0.024
Benzo[a]pyrene Benzo[b]fluoranthene	205-99-2	0.2	NA	< 0.049	NA	< 0.049	NA	0.26	< 0.049	NA	NA	< 0.049	NA	< 0.049	NA	< 0.093	< 0.039
	191-24-2	600	NA	< 0.09	NA	< 0.09	NA	< 0.064	< 0.09	NA	NA	< 0.09	NA	< 0.09	NA	< 0.093	< 0.042
Benzo[g,h,i]perylene Benzo[k]fluoranthene	207-08-9	2.5	NA	< 0.081	NA	< 0.081	NA	0.004	< 0.081	NA	NA	< 0.081	NA	< 0.081	NA	< 0.085	< 0.030
Chrysene	218-01-9	2.5	NA	< 0.081	NA	< 0.081	NA	0.2	< 0.075	NA	NA	< 0.075	NA	< 0.081	NA	< 0.085	< 0.043
Dibenz(a,h)anthracene	53-70-3	0.025	NA	< 0.073	NA	< 0.073	NA	< 0.067	< 0.073	NA	NA	< 0.073	NA	< 0.073	NA	< 0.069	< 0.035
Fluoranthene	206-44-0	800	NA	< 0.056	NA	0.007	J NA	< 0.056	< 0.056	NA	NA	< 0.056	NA	< 0.007	NA	< 0.058	< 0.029
Fluorene	86-73-7	150	NA	< 0.064	NA	< 0.064	NA	< 0.064	< 0.064	NA	NA	< 0.064	NA	< 0.030	UJ NA	< 0.066	< 0.023
Indeno[1,2,3-cd]pyrene	193-39-5	0.25	NA	< 0.079	NA	< 0.004 < 0.079	NA	0.15 J	< 0.079	NA	NA	< 0.079	NA	< 0.079	NA	< 0.082	< 0.033
Naphthalene	91-20-3	0.12	NA	< 0.055	NA	< 0.075	NA	< 0.055	< 0.055	NA	NA	< 0.055	NA	< 0.075	UJ NA	< 0.057	< 0.036
Phenanthrene	85-01-8	1700	NA	0.053 J	NA	0.000	J NA	0.064 J	0.058 J	NA	NA	0.065 J	NA	0.06	J NA	< 0.053	< 0.038
Pyrene	129-00-0	79	NA	< 0.05	NA	0.073	J NA	< 0.05	< 0.05	NA	NA	< 0.05	NA	< 0.05	NA	< 0.052	< 0.029
Metals, Dissolved (µg/L)	120 00 0	10	107	0.00		0.010	0 107	0.00	0.00	101	101	0.00	101	0.00	101	0.002	0.020
Aluminum	7429-90-5	20000	7	J < 30 U	7 J	< 30	U 9 J	J < 30 U	34	< 6	< 6	< 30 U	16 J	350	546	430	420
Antimony	7440-36-0	6	4.9	1.7 J	1 J	0.41	J 0.6 J	J < 0.38	< 0.38	< 0.3	< 0.3	< 0.38	< 0.3	< 0.38	< 0.3	< 0.38	< 0.22
Arsenic	7440-38-2	10	< 1	0.5 J	< 1	1.1	< 1	< 0.31	< 0.31	< 1	< 1	1.3	< 1	< 0.31	< 1	0.41 J	< 0.88
Barium	7440-39-3	2000	55.2	87	78.4	100	52.2	87	86	40.5	39.8	65	29.5	43	31.2	21	23
Beryllium	7440-41-7	4	< 0.2	< 0.18	< 0.2	< 0.18	< 0.2	< 0.18	< 0.18	< 0.2	< 0.2	< 0.18	< 0.2	1.9	0.8 J	0.78 J	0.78
Cadmium	7440-43-9	5	< 0.2	0.42 J	< 0.2	< 0.22	< 0.2	< 0.22	< 0.22	< 0.2	< 0.2	< 0.22	< 0.2	0.64	J 1.6	1	1
Calcium	7440-70-2		NA	41000	NA	80000	NA	24000	24000	NA	NA	98000	NA	22000	NA	43000	42800
Chromium ⁽¹⁾	16065-83-1	22000	< 1	< 1.5	< 1	< 1.5	< 1	< 1.5	< 1.5	< 1	< 1	< 1.5	< 1	< 1.5	< 1	< 1.5	< 0.9
Cobalt	7440-48-4	6	< 1	0.9	1.7 J	1.9	3.3 J	J 0.22 J	0.24 J	7.6	7.7	14	7.2	66	65.6	31	32
Copper	7440-50-8	1300	1.6	J 1.1 J	1.2 J	< 0.63	< 1	1.2 J	< 0.63	< 1	< 1	< 0.63	< 1	< 0.63	23.2	< 0.63	< 1
Iron	7439-89-6	14000	NA	< 20	NA	6100	NA	< 20	< 20	NA	NA	8100	NA	670	NA	180	180
Lead	7439-92-1	15	12.5	51	2.7	0.42	J 2.3	0.54 J	0.41 J	< 0.2	< 0.2	< 0.13	< 0.2	0.9	J 7.1	1	0.98
Magnesium	7439-95-4		NA	3100	NA	6800	NA	1700	1600	NA	NA	11000	NA	8700	NA	10000	10300
Manganese	7439-96-5	430	32	J 34	274	470	92 J	J 4.8 J	5.9	629	610	260	173	870	3810	1900	1900
Mercury	7439-97-6	2	< 0.1	< 0.13	< 0.1	< 0.13	< 0.1	< 0.13	< 0.13	< 0.1	< 0.1	< 0.13	< 0.1	< 0.13	< 0.1	< 0.13	< 0.25
Nickel	7440-02-0	390	< 2	0.8 J	2.1 J	1.5	3.1 J	J 0.41 J	0.62 J	5.2 J	5.3 J	5.9	5.3 J	54	10.7	5	6
Potassium	7440-09-7		NA	4400	NA	3400	NA	1100	1000	NA	NA	2700	NA	1900	NA	800	800
Selenium	7782-49-2	50	< 4	2.5 J	< 4	< 1.5	< 4	< 1.5	< 1.5	< 4	< 4	< 1.5	< 4	< 1.5	< 4	1.7 J	< 0.86
Silver	7440-22-4	94	< 1	< 0.18	< 1	< 0.18	< 1	< 0.18	< 0.18	< 1	< 1	< 0.18	< 1	< 0.18	< 1	< 0.18	< 0.87
Sodium	7440-23-5		NA	3900	NA	5700	NA	710	720	NA	NA	16000	NA	7700	NA	9800	9800
Thallium	7440-28-0	2	< 0.2	< 0.15	< 0.2	< 0.15	< 0.2	< 0.15	< 0.15	< 0.2	< 0.2	< 0.15	< 0.2	< 0.15	< 0.2	0.17 J	< 0.17
Vanadium	7440-62-2	150	1.9	J < 0.99	< 1	< 0.99	< 1	< 0.99	< 0.99	< 1	< 1	< 0.99	< 1	< 0.99	< 1	< 0.99	< 1.1
Zinc	7440-66-6	6000	8.3	J 29	11.8	11	4.9 J	J < 5 U	< 3.2	6.5 J	7.8 J	13	8.6 J	99	86.8	36	39

Notes:

Screening criteria are the De Minimis Values from Table 60-3B of the West Virginia Voluntary Remediation and Redevelopment Rule. Effective December 2, 2021. Double dashes indicate that a De Minimis Value is not available for a given constituent. Notes regarding specific values for various chemicals (e.g., surrogates used, effects basis, etc.) are as 1follows: Screening criteria for chromium are based on the screening criteria for chromium (III).

- 2-General sample information provided in column headings includes sample identification number and sampling date. Table qualifier codes are as follows:
 - J Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the reported concentration is an approximate value.
 - * The laboratory Method Detection Limit exceeds one or more Screening Criteria for the associated analyte.
 - ^ ICV, CCV, ICB, CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC is outside acceptance limits.
 - FL MS and/or MSD recovery below control limits.

Other Notes:

NA Not Analyzed Shading indicates an exceedance of the Groundwater De Minimis Value.

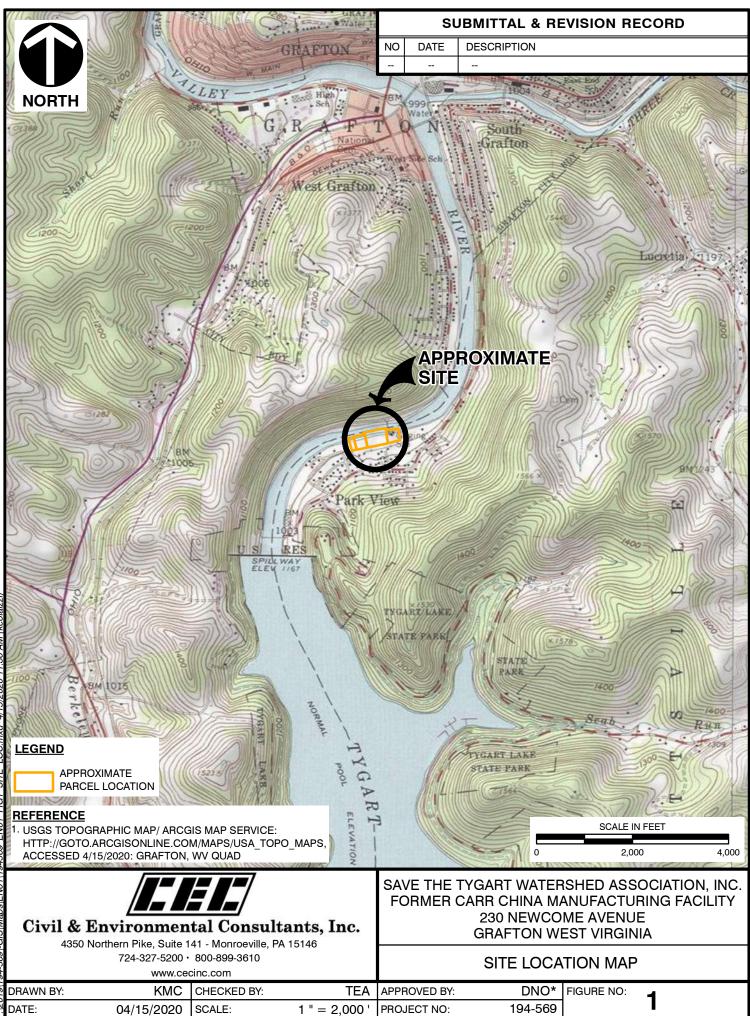
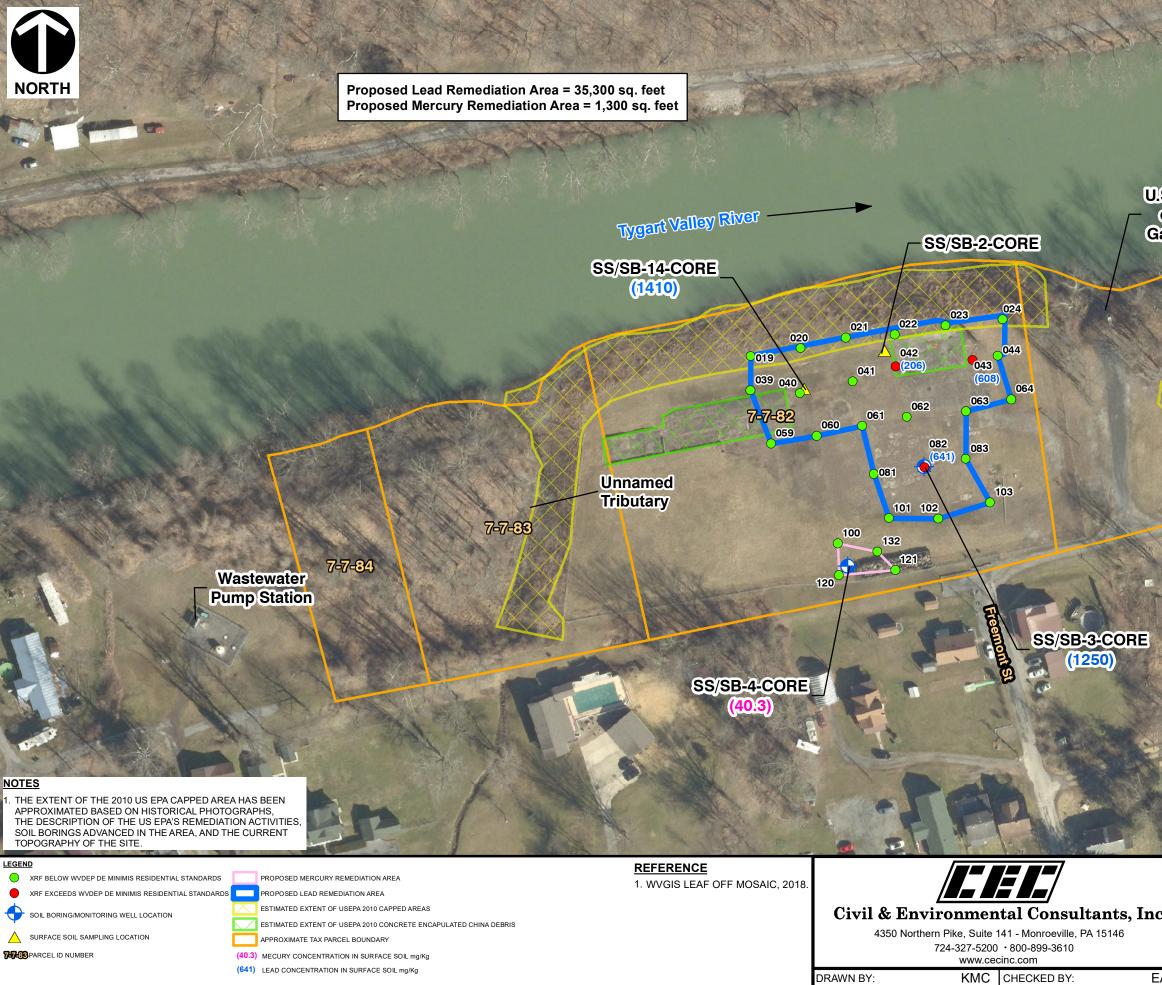

Red text reflects changes made to the dataset as a result of the validation process.

TABLE 4

SUMMARY OF XRF RESULTS - REMEDIATION AREAS FORMER CARR CHINA MANUFACTURING FACILITY - GRAFTON, WEST VRP PROJECT #20019

CORE 2019 XRF Sampling Point	Lead Concentration (mg/Kg)	Mercury Concentration (mg/Kg)
019	12.3 +/- 1.9	Not Detected
020	11.7 +/- 1.6	Not Detected
021	12.2 +/- 1.7	Not Detected
022	24.7 +/- 2	Not Detected
023	30.9 +/- 1.8	Not Detected
024	9.8 +/- 1.4	Not Detected
039	14.1 +/- 1.5	Not Detected
040	16.3 +/- 1.9	Not Detected
041	8.4 +/- 2	Not Detected
042	206 +/- 5	Not Detected
043	608 +/- 7	Not Detected
044	12.3 +/- 1.7	Not Detected
059	34 +/- 3	Not Detected
060	111 +/- 4	Not Detected
061	76 +/- 4	Not Detected
062	15 +/- 2	Not Detected
063	13 +/- 1.9	Not Detected
064	35 +/- 2	Not Detected
081	38 +/- 3	Not Detected
082	641 +/- 9	Not Detected
083	17.9 +/- 1.9	Not Detected
101	88 +/- 3	Not Detected
102	8 +/- 2	Not Detected
103	12 +/- 2	Not Detected
100	8.1 +/- 1.5	Not Detected
120	8.4 +/- 1.2	Not Detected
121	68 +/- 3	Not Detected
132	14.6 +/- 1.5	Not Detected

FIGURES



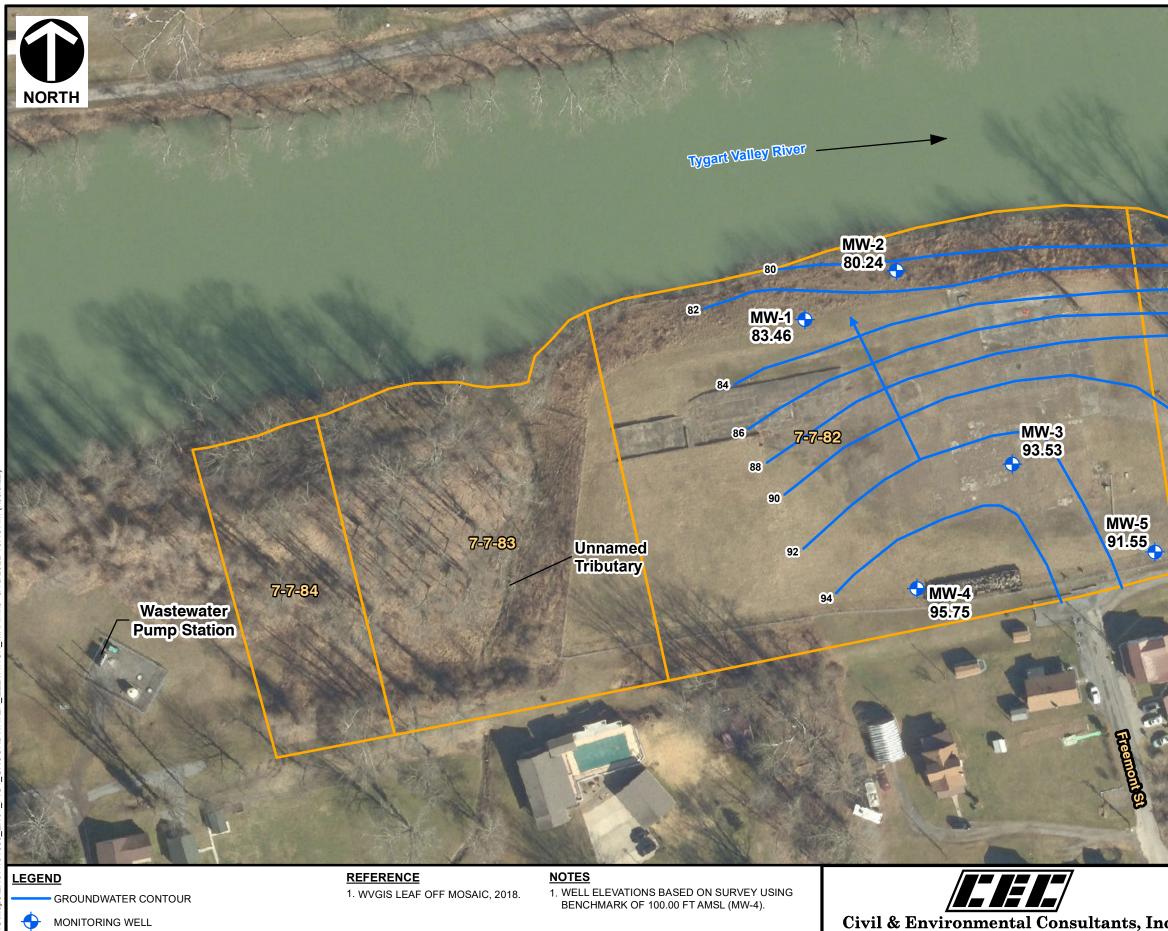
1 " = 80 ' PROJECT NO:

DATE:

03/16/2021 SCALE:

		<u>SI</u>	JBMITTAL & RE		
	NO	DATE	DESCRIPTION		
			of Eng	ny Corps jineers	
	are			Station	
1 de	at it is	7-7-31	MVV-6		
				Pottery Lr	
	1 × 1			2.0	and a
imate ST Are		mer			
F				X	
			0	SCALE IN	10
nc.	SA\ FC	/E THE ⁻ RMER (TYGART WATER CARR CHINA MA 230 NEWCO GRAFTON, WI	NUFACTU ME AVENU	RING FACILITY E
			SITE LA		
EAS = 80 '		ROVED BY: JECT NO:	DNO* 194-569	FIGURE NO:	2

1 " =


08/18/2022 SCALE:

DATE:

SUBMITTAL & REVISION RECORD NO DATE DESCRIPTION u u u USARTAL SARRY Corps of Engineers Corps of Engineers auging Station
1.S. Army Corps of Engineers
7-7-31
AC. SAVE THE TYGART WATERSHED ASSOCIATION, INC FORMER CARR CHINA MANUFACTURING FACILITY 230 NEWCOME AVENUE GRAFTON, WEST VIRGINIA

PROPOSED SOIL COVER AREAS

EAS	APPROVED BY:		FIGURE NO:	2	
= 100 '	PROJECT NO:	194-569	* Hand signature on file	3	

7-7-33 PARCEL ID NUMBER

83.46 WATER ELEVATION MEASURED ON 9/1/20

APPROXIMATE TAX PARCEL BOUNDARY

4350 Northern Pike, Suite 141 - Monroeville, PA 15146 724-327-5200 • 800-899-3610 www.cecinc.com

08/18/2022 SCALE:

JDM CHECKED BY:

DRAWN BY:

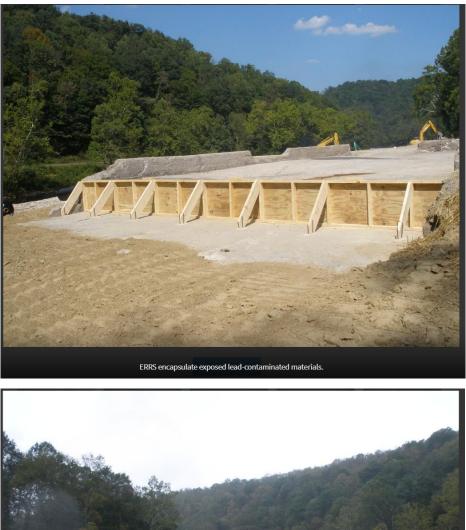
DATE:

	NO	SUBMITTAL & REVISION RECORD 0 DATE DESCRIPTION				
		DATE 				
			U.S. Army Corps of Engineers Gauging Station			
	and the second	7-7-81	MW-6 89.11			
	1 M					
V-5 .55	X all		PotteryLn			
		X				
Amont St.			SCALE IN FEET 0 80 160			
5 5, Inc.	SA\ FC	/E THE RMER (TYGART WATERSHED ASSOCIATION, INC. CARR CHINA MANUFACTURING FACILITY 230 NEWCOME AVENUE GRAFTON, WEST VIRGINIA			
TAW		ROUNE				
1 " = 80 '		JECT NO:	194-569 [*] Hand signature 4			
	-					

USEPA REMEDIATION PHOTOGRAPHS

PHOTOS OF USEPA REMEDIATION ACITVITIES CONDUCTED IN 2009 AND 2010 Source: <u>https://response.epa.gov/site/site_profile.aspx?site_id=4151</u>

CONCRETE ENCAPUSULATION AREAS



PHOTOS OF USEPA REMEDIATION ACITVITIES CONDUCTED IN 2009 AND 2010 Source: <u>https://response.epa.gov/site/site_profile.aspx?site_id=4151</u>

PHOTOS OF USEPA REMEDIATION ACITVITIES CONDUCTED IN 2009 AND 2010 Source: <u>https://response.epa.gov/site/site_profile.aspx?site_id=4151</u>

PHOTOS OF USEPA REMEDIATION ACITVITIES CONDUCTED IN 2009 AND 2010 Source: <u>https://response.epa.gov/site/site_profile.aspx?site_id=4151</u>

EXCAVATION AND CAPPING IN THE EASTERN PORTION OF THE SITE

PHOTOS OF USEPA REMEDIATION ACITVITIES CONDUCTED IN 2009 AND 2010 Source: <u>https://response.epa.gov/site/site_profile.aspx?site_id=4151</u>

EXCAVATION AND CAPPING ALONG THE BANKS OF THE UNNAMED TRIBUTARY AND THE TYGART RIVER

PHOTOS OF USEPA REMEDIATION ACITVITIES CONDUCTED IN 2009 AND 2010 Source: <u>https://response.epa.gov/site/site_profile.aspx?site_id=4151</u>

PHOTOS OF USEPA REMEDIATION ACITVITIES CONDUCTED IN 2009 AND 2010

PHOTOS OF USEPA REMEDIATION ACITVITIES CONDUCTED IN 2009 AND 2010



PHOTOS OF USEPA REMEDIATION ACITVITIES CONDUCTED IN 2009 AND 2010

PHOTOS OF USEPA REMEDIATION ACITVITIES CONDUCTED IN 2009 AND 2010

APPENDIX B

DRAFT LAND USE COVENANT

LAND USE COVENANT

This is an environmental covenant executed pursuant to the Voluntary Remediation and Redevelopment Act, W. Va. Code § 22-22, and the Uniform Environmental Covenants Act, W. Va. Code § 22-22B, to restrict the activities on, and uses of, the following described property:

Street Address:	230 Newcome Avenue
City:	Grafton
County:	Taylor County
Tax District (as applicable):	7 - Knottsville
Tax Map:	7
Tax Parcel(s):	81, 82, 83, and 84
Deed Book(s):	361
Page No(s).:	207
Acres:	1.4, 3.75, 1.57, and 0.67

A map is attached as Exhibit A indicating the areas to which specific activity and use limitations and/or engineering controls apply.

The subject property has been remediated in accordance with the Voluntary Remediation and Redevelopment Act, W. Va. Code § 22-22. Non-residential exposure assumptions were used to comply with the site-specific remediation standard. A table of contaminants of concern is provided as Exhibit B.

The following activities on and uses of the above described property may result in excessive human exposure or in the release of a contaminant that was contained as part of the remedial action related to this covenant. Therefore, the following activities on and uses of the real property are prohibited:

- 1. Residential land use, as defined by the Voluntary Remediation and Redevelopment Rule (60CSR3), Section 2.40, including, but not limited to, schools, day care centers, nursing homes, or other residential-style facilities. Recreational areas are specifically permitted, as determined by a site-specific risk assessment conducted for the property.
- 2. Use or extraction of groundwater for any purpose, except for groundwater monitoring and/or remediation.
- 3. Excavation, drilling, or penetration of the ground surface, unless the following requirements are met:
 - a. The activity is conducted by persons qualified and knowledgeable about releases and exposures to contaminants known to exist at the site.

- b. The work is performed in accordance with applicable health and safety laws and regulations and a Soil Management Plan developed by a West Virginia Licensed Remediation Specialist or similarly qualified individual.
- c. The disturbed area is restored in a manner which assures that an equivalent amount of exposure control is achieved at the conclusion of the work.
- d. The owner of the real property provides written notice to the West Virginia Department of Environmental Protection (WVDEP) of the intent to conduct such work no less than five (5) days prior to beginning unless a waiver is granted by the WVDEP.
- e. At the request of the WVDEP, the owner of the real property provides written evidence (including laboratory analytical data) showing the affected area continues to meet the remediation standard following completion of the work.

The following engineering control(s) (depicted on Exhibit A) have been installed at the property as a part of the remedy and is/are necessary to attain the designated remediation standard and shall be operated and maintained as necessary to protect the functional integrity:

Engineering Control 1: An approximate 12 to 24-inch vegetated soil cap covering areas of contaminated soil designated as "USEPA Soil Cap" on Exhibit A. A geotextile fabric demarcation barrier exists between the soil cover and the underlying contaminated soil.

Engineering Control 2: Areas of concrete encapsulated china debris designated as "Concrete Encapsulation Areas" on Exhibit A.

Engineering Control 3: An approximate 12-inch vegetated soil cap covering areas of contaminated soil designated as" VRP Soil Cover" on Exhibit A. An orange plastic mesh demarcation barrier exists between the soil cover and the underlying contaminated soil.

Current owner(s) of record of the property, and associated contact information:

Save the Tygart Watershed Association, Inc. Attn.: Dr. Kelley Flaherty P.O Box 164 Grafton, WV 26354

Any person, including a person that owns an interest in the real property, the state or federal agency determining or approving the environmental response project pursuant to which an environmental covenant is created, or a municipality or other unit of local government may be a holder of an environmental covenant. The following are all holders of this covenant:

Save the Tygart Watershed Association, Inc. Owner P.O. Box 164 Grafton, WV 26354 The owner(s) of the property shall provide written notice to the WVDEP within ten (10) days following transfer of a specified interest in the property subject to this covenant, changes in use of the property, or applications for building permits or proposals for any site work affecting the contamination on the property. Any notice regarding transfer of a specified interest in the property subject to this covenant shall include the name, address, and contact information for the new owner.

The owner(s) shall conduct annual inspections of the property no more than sixty (60) days before or after the anniversary date of this document in accordance with the Land Use Covenant Inspection Form provided as Exhibit D to monitor compliance with this Land Use Covenant and shall submit the signed form to the WVDEP headquarters within thirty (30) days of the inspection.

This covenant relieves the applicant and subsequent successors and assigns from all civil liability to the State as provided under W. Va. Code § 22-22 and shall remain in effect so long as the property complies with the applicable standards in effect at the time this covenant was issued.

This covenant shall not be amended, modified, or terminated except by written instrument executed in accordance with W. Va. Code § 22-22B-10, by and between the owner at the time of the proposed amendment, modification, or termination; the WVDEP; and the holders of this covenant. Within five (5) days of executing an amendment, modification, or termination of this Land Use Covenant, the owner shall record such amendment, modification, or termination with the Clerk of the County Commission, and within five (5) days thereafter, the owner shall provide a true copy of the recorded amendment, modification, or termination to the WVDEP.

The administrative record for the environmental response project reflected in this covenant is maintained at the WVDEP headquarters, and is entitled:

Former Carr China Manufacturing Facility, VRP #20019

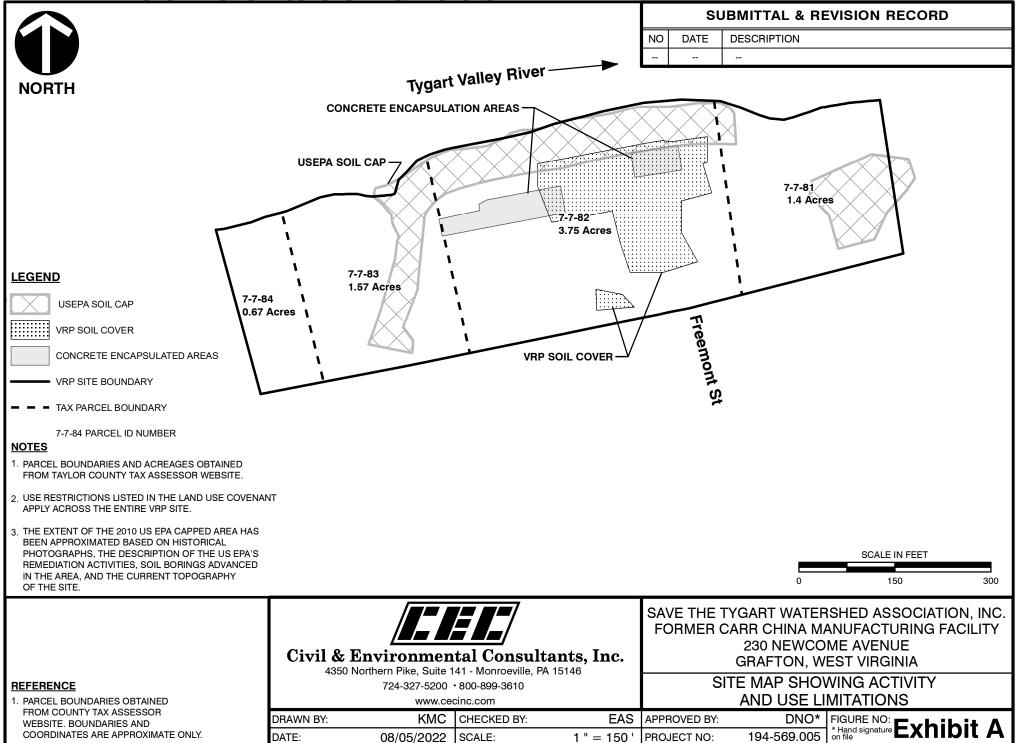
The WVDEP is granted full right of access to the property for the purpose of implementation or enforcement of this covenant.

All restrictions and other requirements described in this covenant shall run with the land and shall be binding upon all holders and their grantees, lessees, authorized agents, employees, or persons acting under their direction or control.

[SIGNATURES APPEAR ON THE FOLLOWING PAGES]

IN WITNESS WHEREOF, the following holders have executed this covenant on the dates indicated.

Printed Name:	Dr. Kellev Flaher	tv						
	rt Watershed Association, Inc. Name: Dr. Kelley Flaherty Executive Director Date Date							
Signature			Date					
1,		, a Notary P	ublic in and for the County of					
	older(s) whose name	e of e is/names are s	do hereby igned above, this day executed ged same to be true act and deed					


Notary Public

Printed Name:	Robert Rice		
Title:	Director, Divisio	on of Land Restoration	
Signature		Ē	Date
I,	Ste	, a Notary Public in	and for the County of
certify that	, 56	ate of, whose name is	, uo nereby
ouring mat		ay executed this document	
	the ageney, this da		
representative of	0	act and deed of said holde	• 1

The Clerk will return the recorded document to:

Office of Environmental Remediation West Virginia Department of Environmental Protection 601 57th Street SE Charleston, WV 25304

P:\2019\194-569\-GIS\Maps\EN03_Task_005\194569_EN03_EXHIBIT_A_SITE_MAP_SHOWING_ACTIVITY_AND_USE_LIMITATIONS.mxd 8/18/2022 9:31 AM (kcolaizzi)

EXHIBIT B

CONTAMINANTS OF CONCERN Former Carr China Manufacturing Facility – Grafton, West Virginia VRP# 20019

Media	Contaminants of Concern
Surface Soil	Arsenic
	Lead
	Manganese
	Mercury
	Benzo[a]pyrene
Subsurface Soil	Lead
	Mercury
	Benzo[a]anthracene
	Benzo[a]pyrene
	Benzo[b]fluoranthene
	Dibenz(a,h)anthracene
	Indeno[1,2,3-cd]pyrene
Groundwater	Benzo[b]fluoranthene
	Cobalt
	Lead
	Manganese

Land Use Covenant Inspection Form

The property owner is responsible for conducting annual inspections of the site and submitting this form to WVDEP no more than sixty (60) days before or after the anniversary date of the LUC recording. The person conducting the inspection should refer to the recorded LUC for details, including a map of the affected property and descriptions of the activity and use limitations and engineering controls.

E	nvironmental Response	Project Descr	ription					
S	ite Description							
	Site ID Number 20019	Site Name Former Carr China	a Manufactı	uring Facility	у		County Taylor	
	Address 230 Newcome Avenue				Grafton		State WV	Zip Code 26354
Ρ	roperty Owner on Land Use Cov	/enant						
	Property Owner Name Save the Tygart Watershed Assoc	tiation						
	Address P.O Box 164				City Grafton		State	Zip Code 26354
Α	nnual Inspection – Reco	rds						
С	urrent Property Owner							
	Has property ownership transferred s	ince LUC recording?	No:	If contact in	formation has	not changed, skip	to "Current	Site Use."
			□ Yes:	Provide nev	v property owr	ner contact informa	ation below.	
	Property Owner Name							
	Address				City		State	Zip Code
	Phone	Email						
С	urrent Site Use							
	Land Use (check all that apply)	al 🗆 Industrial	Recrea	ational 🗆	Residential	□ School □	□ Vacant	□ Other
	Provide brief description of current sit	e use (including nam	es of busine	sses located	on property).			

Annual Inspection – Property Observations

Activity and Use Limitations

			sive human exposure or in the release of a contaminant that was contained as e prohibited activities and uses listed below have occurred in the past year.
Activity and Use Limitation	Occurred in	n past year?	If "yes", describe:
Residential Use	🗆 No	□ Yes	
Groundwater Use	🗆 No	□ Yes	
Excavation/Drilling	🗆 No	□ Yes	
Other AUL	🗆 No	□ Yes	
Other AUL	🗆 No	□ Yes	

Engineering Controls The following engineering controls have been installed at the property as a part of the remedy and are necessary to attain the designated remediation standard. They should be operated and maintained as necessary to protect their functional integrity. Inspect the site to determine if the engineering controls listed below are intact, functioning correctly, and being maintained as necessary. **Engineering Control** Still intact and effective? If "no", describe: **USEPA Soil Cap Areas** □ Yes 🗆 No **USEPA** Concrete Encapsulation □ Yes 🗆 No Areas **VRP Soil Cover** Yes 🗆 No Other Engineering Control □ Yes 🗆 No Other Engineering Control □ Yes 🗆 No

Annual Inspection – Notes, Comments, or Concerns

Person Conducting Inspection

С	ontact Information					
	Inspector Name	Relationship to Property				
	Mailing Address		City		State	Zip Code
	Phone	Email				
S	tatement of Affirmation					
I	affirm that the information provided in	this Land Use Covenant Inspection Form, to t accurate.	he best o	f my knowledge and be	lief, is true, c	omplete, and
	Signature		C	Date		

Return completed and signed form, in addition to any attachments, electronically to <u>DEPOERFileCopy@wv.gov</u>, or mail to:

West Virginia Department of Environmental Protection Office of Environmental Remediation Attn.: LUC Inspections 601 57th Street SE Charleston, WV 25304

APPENDIX C

POST-MITIGATION RISK CALCULATIONS

TABLE C-1 EXPOSURE POINT CONCENTRATIONS FOR SOIL - REMEDIATED SCENARIO FORMER CARR CHINA MANUFACTURING FACILITY - GRAFTON, WEST VIRGINIA VRP PROJECT #20019

Contaminants of Concern Surface Soil	Number of Samples ⁽¹⁾	Number of Detected Results	Maximum Detected Concentration (mg/Kg)	Upper Confidence Limit ⁽²⁾ (mg/Kg)	Exposure Point Concentration ⁽³⁾ (mg/Kg)
Mercury	40	38	40.3	5.46	5.46
Benzo[a]anthracene	40	13	0.44	0.14	0.14
Benzo[a]pyrene	40	14	0.43	0.13	0.13
Benzo[b]fluoranthene	40	14	0.66	0.20	0.20
Dibenz(a,h)anthracene	40	3	0.10	0.069	0.069
Indeno[1,2,3-cd]pyrene	40	10	0.38	0.12	0.12

Notes:

¹ The surface soil dataset includes samples collected from 0 and 2 feet bgs, excluding samples SS-2-CORE and SS-3-CORE, which will be covered with a soil cap.

Duplicate and parent samples are maintained as two distinct samples.

² Upper Confidence Limits (UCLs) were calculated using the USEPA ProUCL software. The ProUCL statistical output is provided in Appendix B.

³ The Exposure Point Concentration (EPC) is the lower of the maximum detected concentration or the UCL.

TABLE C-2 SUMMARY OF RISK CHARACTERIZATION FORMER CARR CHINA MANUFACTURING FACILITY - GRAFTON, WEST VIRGINIA VRP PROJECT #20019

		Noncancer Hazard	Theoretical Excess Lifetime
Receptor	Exposure Pathways	Index	Cancer Risk
Future Adult (Age 16-26) Recreational	Incidental Ingestion of Surface Soil		
Receptor	Dermal Contact with Surface Soil		
	Inhalation of Volatile and Particulate Emissions from Surface Soil	1E-01	5E-08
Future Adult (Age 6-16) Recreational	Incidental Ingestion of Surface Soil		
Receptor	Dermal Contact with Surface Soil		
	Inhalation of Volatile and Particulate Emissions from Surface Soil	1E-01	1E-07
Future Child (Age 2-6) Recreational	Incidental Ingestion of Surface Soil		
Receptor	Dermal Contact with Surface Soil		
	Inhalation of Volatile and Particulate Emissions from Surface Soil	4E-01	5E-07
Future Child (Age 0-2) Recreational	Incidental Ingestion of Surface Soil		
Receptor	Dermal Contact with Surface Soil		
	Inhalation of Volatile and Particulate Emissions from Surface Soil	4E-01	8E-07
	Lifetime Resident	1E+00	1E-06

Notes:

Appendix C presents a detailed breakdown of the risk calculations by pathway and constituent.

Shaded values exceed the WVDEP excess lifetime cancer risk of 1 x 10⁻⁵ for nonresidential receptors or 1 x 10⁻⁶ for recreational receptors.

	A B C	DE	F	G H I J K	1
1			tics for Data	Sets with Non-Detects	
2					
3	User Selected Options				
4	Date/Time of Computation	ProUCL 5.17/21/2022 4:0	09:37 PM		
5	From File	SurfSoilProUCL - Remed	liated.xls		
6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9		1			
10	Mercury				
11					
12			General	Statistics	
13	Total	Number of Observations	40	Number of Distinct Observations	29
14		Number of Detects	38	Number of Non-Detects	2
15	N	umber of Distinct Detects	29	Number of Distinct Non-Detects	1
16		Minimum Detect	0.02	Minimum Non-Detect	0.02
17		Maximum Detect	40.3	Maximum Non-Detect	0.02
18		Variance Detects	42.61	Percent Non-Detects	5%
19		Mean Detects	1.129	SD Detects	6.527
20		Median Detects	0.044	CV Detects	5.784
21		Skewness Detects	6.161	Kurtosis Detects	37.97
22		Mean of Logged Detects	-2.877	SD of Logged Detects	1.296
23		Norm		t an Datasta Only	
24		hapiro Wilk Test Statistic	0.173	t on Detects Only Shapiro Wilk GOF Test	
25		hapiro Wilk Critical Value	0.173	Detected Data Not Normal at 5% Significance Level	
26		Lilliefors Test Statistic	0.507	Lilliefors GOF Test	
27	5	% Lilliefors Critical Value	0.142	Detected Data Not Normal at 5% Significance Level	
28 29				l at 5% Significance Level	
25					
30	Kaplan-	Meier (KM) Statistics usir	ng Normal C	ritical Values and other Nonparametric UCLs	
31	•	KM Mean	1.073	KM Standard Error of Mean	1.007
32 33		KM SD	6.282	95% KM (BCA) UCL	3.078
33 34		95% KM (t) UCL	2.769	95% KM (Percentile Bootstrap) UCL	3.081
34 35		95% KM (z) UCL	2.729	95% KM Bootstrap t UCL	232.9
36	ç	90% KM Chebyshev UCL	4.093	95% KM Chebyshev UCL	5.461
37	97	.5% KM Chebyshev UCL	7.36	99% KM Chebyshev UCL	11.09
38					
39		Gamma GOF	Tests on De	tected Observations Only	
40		A-D Test Statistic	11.41	Anderson-Darling GOF Test	
41		5% A-D Critical Value	0.889	Detected Data Not Gamma Distributed at 5% Significance	Level
42		K-S Test Statistic	0.472	Kolmogorov-Smirnov GOF	
43		5% K-S Critical Value	0.158	Detected Data Not Gamma Distributed at 5% Significance	Level
44		Detected Data Not C	amma Dist	ributed at 5% Significance Level	
45					
46				Detected Data Only	
47		k hat (MLE)	0.239	k star (bias corrected MLE)	0.237
48		Theta hat (MLE)	4.727	Theta star (bias corrected MLE)	4.753
49		nu hat (MLE)	18.14	nu star (bias corrected)	18.04
50		Mean (detects)	1.129		

	A	В	(С	<u>г</u>	D		E	E		F	Т	G		Н		Т	1		T	J		Т		<		L
51																										•	
52							Gar	mma	a ROS	S Sta	tistics	usir	ng Imp	uted	Non-E)ete	cts										
53															any tie						•						
54	GR	OS may	not be																			all (e.g.	., <1	5-20)	
55				Fo	or suc	h situ:	ation	ıs, G	ROS	meth	od ma	y yi	eld inc	orre	ct value	es of	UC	Ls and	d B	TVs							
56							This	s is (espec	ially	rue wh	nen	the sar	mple	e size is	ssm	all.										
57		For gam	ima di	stribut	ted d	etecte	ed dat	ta, E	BTVs a	and L	ICLs m	nay	be con	nput	ed usin	g ga	IMM	a dist	ribu	ition	on K	(M e	estin	nate	es		
58								Min	nimum	C	.01														Mea	n	1.073
59								Max	kimum	4	0.3													N	ledia	n	0.0435
60									SD		5.363														C١	/	5.932
61							k	hat	(MLE)		0.236								k :	star	(bias	3 CO	rrec	ted	MLE	.)	0.235
62						TI	heta l	hat	(MLE)		4.539							The	eta	star	(bias	3 CO	rrec	ted	MLE	i)	4.559
63							nul	hat	(MLE)	1	8.91									n	u star	(bi	as c	corr	ected)	18.82
64			Ad	ljusted	Lev	əl of S	Signifi	ican	ice (β)	C	.044																
65				ate Chi	•			•			9.986							usted			•			•		<i>'</i>	9.745
66	95%	Gamma	Appro	oximate	e UC	L (use	e whe	en n	>=50)		2.021				95	% G	amr	na Ad	just	ted	UCL	(use	e wh	nen	n<50))	2.072
67																											
68							Estin	nate	es of C	amn	na Para	ame	eters u	sing	KME	stima	ates										
69			-				Μ	lear	n (KM)		1.073													SE) (KM)	6.282
70							Varia	ance	e (KM)	3	9.47										ç	SE c	of M	lear	n (KM)	1.007
71							k	k hat	t (KM)	C	.0292												k	sta	r (KM)	0.0437
72	nu hat (K				t (KM)		2.334												nu	sta	r (KM)	3.492				
73	theta hat (K				t (KM)	3	6.78											th	eta	sta	r (KM)	24.58				
74	80% gamma percentile (KI				e (KM)	C	.0864				90% gamma percentile (KM))	1.348								
75				95%	∕₀ gar	nma p	perce	entile	e (KM)		5.391								99%	% ga	amma	а ре	rcer	ntile	e (KM)	24.58
76																							-			1	
77								(Gamr	na Ka	aplan-N	Veie	er (KM)) Sta	atistics												
78		App	oroxim	nate Cl	hi Sc	uare \	Value	e (3.	.49, α)).532						A	djuste	ed C	hi S	Squar	e Va	alue	э (З	49, β	5)	0.494
79	95% Gam	nma Appr	roxim	ate KM	∕I-UC	L (use	e whe	en n	>=50)		7.043				95% G	amn	na A	djuste	ed k	<m-< td=""><td>JCL</td><td>(use</td><td>e wh</td><td>nen</td><td>n<50</td><td>)</td><td>7.591</td></m-<>	JCL	(use	e wh	nen	n<50)	7.591
80						95%	Gam	ma	Adjus	ted K	M-UCI	L (u	se whe	en k≺	<=1 and	15	< n	< 50)									
81																											
82							Logn	norm	nal GO	OF To	est on	Det	ected	Obs	ervatio	ns C	Only										
83				S	hapi	ro Will	k Tes	st St	atistic	; (0.602						Sł	napiro) Wi	ilk C	GOF	Tes	t				
84				5% Sł	hapir	o Wilk	< Criti	ical	Value	9 (0.938			De	etected	Data	a No	t Logi	norr	mal	at 5%	6 Si	gnifi	icar	nce L	evel	
85					Li	lliefor	s Tes	st St	atistic	: ().24							Lillief	ors	GC	F Te	st					
86				5	% Lil	lliefors	s Criti	ical	Value).142			De	etected	Data	a No	t Logi	norr	mal	at 5%	6 Si	gnifi	icar	nce L	evel	
87						C	Detec	cted	Data	Not	_ognor	rma	l at 5%	5 Sig	nifican	ice L	.eve										
88																											
89							-					s Us	ing Im	pute	ed Non	-Det	ects										
90						ean in	-				1.072													-	Scal		2.997
91						SD in					5.363														Scal		1.371
92		95% t U(CL (as								2.767		95% Percentile Bootstrap UCL							3.082							
93				ę		BCA I		-			5.083										95%	Bo	otst	rap	t UC	L 2	20.3
94					959	% H-U	ICL (I	Log	ROS)).24																
95																											
				Statis	stics	-						Da	ta and	Ass	suming	Log	nor	nal D	istri	ibut	ion						
96					-	KM	Mear	n (lo	gged)	-2	.928														Mea		0.0535
96 97										1	1 007					_		95	5% (Criti	cal H					3	2.736
									gged)		1.267								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0110	carri	i va	lue	(KN	1-Log	ויו	
97			KM S	standar	rd Er						0.203										5% F						0.208

	А	В		С		D	E	F		G		Н		I		J			Κ		L
101			KM	Standa	ard Err	or of Me	ean (loggeo	l) 0.2	03												
102																					
103								D	L/2 S	tatistics											
104				DL/2	Norm	al							DL/	2 Log	-Tra	ansfor	med				
105					Me	an in O	riginal Scal	e 1.0	73							М	ean i	in Log	g Scale	-	2.963
105					Ś	SD in O	riginal Scal	e 6.3	63								SD i	in Log	g Scale		1.319
107				95% t	UCL (Assume	s normality) 2.7	68								95%	H-Sta	at UCL		0.223
				DL/2	is not	a reco	mmended	nethod,	provi	ded for c	omp	parisons ar	nd hist	orical	rea	sons					
108 109									-												
110							Nonparar	netric Di	stribu	tion Free	e UC	CL Statistic	s								
					Da	ta do no	=					5% Signifi		Leve	1						
111												•									
112								Suaa	ested	UCL to	Use										
113				9	5% KI	M (Cheb	yshev) UC														
114				-			,,	-													
115		Note: Sugge	estion	s regar	dina th	ne selec	tion of a 95	% UCL :	are pr	ovided to	hel	n the user	to sele	ct the	mo	st ann	ropriz	ate 95	5% UCI		
116				-	-				•			distribution									
117		These reco	mme					•		-							and	1100	(2006)		
118	LL.	owever, simu												-					. ,		
119				101000		1101 001			10 00		ando				<i>y</i>		001100		Juliotic		
120	Benzo[a]ar	othracana																			
121	Denzolajai	lunacene																			
122								Ga	noral	Statistic	•										
123				Toto	Alum	hor of C	bservation		iei ai	Statistic	3			Numb	ord	of Dicti	not C	been	vations		15
124				1012			er of Detect							Numb	_				Detects		27
125				N	lumbo		tinct Detect							Num				-	Detects		2/
126					umbe		mum Deteo		7/					Num	Dei				-Detect		0.066
127							mum Dete												-Detect		0.000
128							nce Detect												Detects		67.5%
129								-								reit					0.125
130							ean Detect												Detects		0.125
131							less Detect										Kurt				0.754
132					Maa		ged Detect												Detects		0.754
133					wear		ged Delect	5 -1.0	14							500	гьод	igeu L	Detects		0.039
134							Ne		- T	t on Det	• •	Only									
135					Chanir		est Statisti			st on Det	ects		Cha	nine V	A/:11.	COF	Taat				
136					•							Detected D		-		GOF					
137				5% 3			ritical Valu				L	Detected D					-	mcano	ce Leve	<u>)</u>	
138							est Statist				r	Detected D				OF Te		: f i = = = =			
139					5% LIII		ritical Valu					Detected D		t Norr	nai	at 5%	Signi	ificano	ce Leve	<u>)</u>	
140							etected Da	Ita Not M	Iorma	al at 5% 3	sign	ificance Le	evel								
141						((0.0))															
142				kapian	-Meiel	r (KM) S				ritical Va	aiue	s and othe	r Non								0.0454
143							KM Mea							ł	×Μ.				f Mean		0.0151
144							KM S							,				•	A) UCL		0.135
145							KM (t) UC						95%	6 KM (•				p) UCL		0.134
146							KM (z) UC												ot UCL		0.142
147							byshev UC											-	ev UCL		0.174
148				9	7.5% k	KM Che	byshev UC	L 0.2	03						99	% KM	Che	byshe	ev UCL		0.259
149																					
150						G	iamma GO	F Tests	on De	etected (Obse	ervations C	only								

	A B C D E	F	G H I J K	L
151	A-D Test Statistic	0.654	Anderson-Darling GOF Test	
152	5% A-D Critical Value	0.74	Detected data appear Gamma Distributed at 5% Significand	ce Level
153	K-S Test Statistic	0.242	Kolmogorov-Smirnov GOF	
154	5% K-S Critical Value	0.238	Detected Data Not Gamma Distributed at 5% Significance	Level
155	Detected data follow Ap	pr. Gamma	Distribution at 5% Significance Level	
156				
157	Gamma	Statistics or	Detected Data Only	
158	k hat (MLE)	2.811	k star (bias corrected MLE)	2.213
159	Theta hat (MLE)	0.07	Theta star (bias corrected MLE)	0.0889
160	nu hat (MLE)	73.08	nu star (bias corrected)	57.55
	Mean (detects)	0.197		
161 162				
	Gamma ROS	Statistics us	sing Imputed Non-Detects	
163			NDs with many tied observations at multiple DLs	
164	-		s <1.0, especially when the sample size is small (e.g., <15-20)	
165	-		yield incorrect values of UCLs and BTVs	
166			In the sample size is small.	
167	-		y be computed using gamma distribution on KM estimates	
168	Minimum	0.01	Mean	0.071
169	Maximum	0.436	Median	0.01
170	SD	0.430	CV	1.584
171	k hat (MLE)	0.598	k star (bias corrected MLE)	0.57
172	Theta hat (MLE)	0.398	Theta star (bias corrected MLE)	0.37
173	nu hat (MLE)	47.86	nu star (bias corrected MEL)	45.6
174		0.044	nu star (blas correcteu)	45.0
175	Adjusted Level of Significance (β)	31.11	Adjusted Obj Orware Malue (4E CO. 0)	30.66
176	Approximate Chi Square Value (45.60, α)		Adjusted Chi Square Value (45.60, β)	
177	95% Gamma Approximate UCL (use when n>=50)	0.104	95% Gamma Adjusted UCL (use when n<50)	0.106
178				
179			meters using KM Estimates	0.0010
180	Mean (KM)	0.108	SD (KM)	0.0919
181	Variance (KM)	0.00845	SE of Mean (KM)	0.0151
182	k hat (KM)	1.393	k star (KM)	1.305
183	nu hat (KM)	111.4	nu star (KM)	104.4
184	theta hat (KM)	0.0779	theta star (KM)	0.0831
185	80% gamma percentile (KM)	0.17	90% gamma percentile (KM)	0.234
186	95% gamma percentile (KM)	0.296	99% gamma percentile (KM)	0.438
187				
188		-	eier (KM) Statistics	
189	Approximate Chi Square Value (104.39, α)	81.81	Adjusted Chi Square Value (104.39, β)	81.06
190	95% Gamma Approximate KM-UCL (use when n>=50)	0.138	95% Gamma Adjusted KM-UCL (use when n<50)	0.14
191				
192	-		etected Observations Only	
193	Shapiro Wilk Test Statistic	0.895	Shapiro Wilk GOF Test	
194	5% Shapiro Wilk Critical Value	0.866	Detected Data appear Lognormal at 5% Significance Le	evel
195	Lilliefors Test Statistic	0.213	Lilliefors GOF Test	
196	5% Lilliefors Critical Value	0.234	Detected Data appear Lognormal at 5% Significance Le	evel
197	Detected Data ap	pear Logno	rmal at 5% Significance Level	
198				
		0.01-1-1-1	lains Inspired New Datasta	
199	Lognormal ROS Mean in Original Scale	0.0805	Using Imputed Non-Detects Mean in Log Scale	-3.281

	A B C D E	F	G H I J K	<u> </u>
201	SD in Original Scale	0.108	SD in Log Scale	1.279
202	95% t UCL (assumes normality of ROS data)	0.109	95% Percentile Bootstrap UCL	0.11
202	95% BCA Bootstrap UCL	0.115	95% Bootstrap t UCL	0.118
203	95% H-UCL (Log ROS)	0.15		
205				
205	Statistics using KM estimates	on Logged I	Data and Assuming Lognormal Distribution	
200	KM Mean (logged)	-2.424	KM Geo Mean	0.0885
208	KM SD (logged)	0.549	95% Critical H Value (KM-Log)	1.96
200	KM Standard Error of Mean (logged)	0.0904	95% H-UCL (KM -Log)	0.122
210	KM SD (logged)	0.549	95% Critical H Value (KM-Log)	1.96
211	KM Standard Error of Mean (logged)	0.0904		
212				
212		DL/2 S	tatistics	
213	DL/2 Normal		DL/2 Log-Transformed	
214	Mean in Original Scale	0.0864	Mean in Log Scale	-2.886
215	SD in Original Scale	0.104	SD in Log Scale	0.832
217	95% t UCL (Assumes normality)	0.114	95% H-Stat UCL	0.106
217		ethod, provi	ded for comparisons and historical reasons	
210			· · · · · · · · · · · · · · · · · · ·	
220	Nonparame	tric Distribu	tion Free UCL Statistics	
220	Detected Data appear Appro	ximate Gan	nma Distributed at 5% Significance Level	
222				
223		Suggested	UCL to Use	
223	95% KM Adjusted Gamma UCL	0.14	95% GROS Adjusted Gamma UCL	0.106
225				
226	When a data set follows an approxi	mate (e.g., i	normal) distribution passing one of the GOF test	
227	When applicable, it is suggested to use a UCL ba	ased upon a	distribution (e.g., gamma) passing both GOF tests in ProUCL	
228				
229	Note: Suggestions regarding the selection of a 95%	UCL are pr	ovided to help the user to select the most appropriate 95% UCL.	
230	Recommendations are bas	ed upon dat	a size, data distribution, and skewness.	
231	These recommendations are based upon the resul	ts of the sim	nulation studies summarized in Singh, Maichle, and Lee (2006).	
232	However, simulations results will not cover all Real W	orld data se	ts; for additional insight the user may want to consult a statisticia	n.
233				
	Benzo[a]pyrene			
235				
236		General	Statistics	
237	Total Number of Observations	40	Number of Distinct Observations	16
238	Number of Detects	14	Number of Non-Detects	26
239	Number of Distinct Detects	14	Number of Distinct Non-Detects	2
240	Minimum Detect	0.073	Minimum Non-Detect	0.066
240	Maximum Detect	0.434	Maximum Non-Detect	0.067
241	Variance Detects	0.0134	Percent Non-Detects	65%
243	Mean Detects	0.177	SD Detects	0.116
244	Median Detects	0.119	CV Detects	0.652
245	Skewness Detects	1.156	Kurtosis Detects	0.353
246	Mean of Logged Detects	-1.908	SD of Logged Detects	0.603
240			I	
247	Norm	al GOF Tes	t on Detects Only	
240 249	Shapiro Wilk Test Statistic	0.84	Shapiro Wilk GOF Test	
249 250	5% Shapiro Wilk Critical Value	0.874	Detected Data Not Normal at 5% Significance Level	
200				

	A B C D E	F	G H I J K	
251	Lilliefors Test Statistic	0.258	Lilliefors GOF Test	
252	5% Lilliefors Critical Value	0.226	Detected Data Not Normal at 5% Significance Level	
253	Detected Data	Not Norma	I at 5% Significance Level	
254				
255	Kaplan-Meier (KM) Statistics usin	ng Normal C	ritical Values and other Nonparametric UCLs	
256	KM Mean	0.105	KM Standard Error of Mean	0.0139
257	KM SD	0.0846	95% KM (BCA) UCL	0.13
258	95% KM (t) UCL	0.128	95% KM (Percentile Bootstrap) UCL	0.129
259	95% KM (z) UCL	0.128	95% KM Bootstrap t UCL	0.14
260	90% KM Chebyshev UCL	0.147	95% KM Chebyshev UCL	0.165
261	97.5% KM Chebyshev UCL	0.192	99% KM Chebyshev UCL	0.243
262	· · · · · · · · · · · · · · · · · · ·			
263	Gamma GOF	Tests on De	etected Observations Only	
264	A-D Test Statistic	0.635	Anderson-Darling GOF Test	
265	5% A-D Critical Value	0.743	Detected data appear Gamma Distributed at 5% Significanc	e Level
266	K-S Test Statistic	0.234	Kolmogorov-Smirnov GOF	
267	5% K-S Critical Value	0.231	Detected Data Not Gamma Distributed at 5% Significance	Level
268	Detected data follow App	or. Gamma I	Distribution at 5% Significance Level	
269				
270	Gamma	Statistics on	n Detected Data Only	
271	k hat (MLE)	2.975	k star (bias corrected MLE)	2.385
	Theta hat (MLE)	0.0596	Theta star (bias corrected MLE)	0.0743
2/2				
272 273	nu hat (MLE)	83.29	nu star (bias corrected)	66.77
273	nu hat (MLE) Mean (detects)	83.29 0.177	nu star (bias corrected)	66.77
			nu star (bias corrected)	66.77
273 274	Mean (detects) Gamma ROS	0.177 Statistics us	sing Imputed Non-Detects	66.77
273 274 275	Mean (detects) Gamma ROS GROS may not be used when data se	0.177 Statistics us et has > 50%	sing Imputed Non-Detects 6 NDs with many tied observations at multiple DLs	66.77
273 274 275 276	Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when kstar of detects is s	0.177 Statistics us et has > 50% small such as	sing Imputed Non-Detects 6 NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20)	66.77
273 274 275 276 277	Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when kstar of detects is s For such situations, GROS n	0.177 Statistics us at has > 50% mall such as nethod may	sing Imputed Non-Detects 5 NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs	66.77
273 274 275 276 277 278	Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when kstar of detects is s For such situations, GROS n This is especia	0.177 Statistics us et has > 50% mall such as nethod may ally true whe	sing Imputed Non-Detects 6 NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs en the sample size is small.	66.77
273 274 275 276 277 278 279	Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when kstar of detects is s For such situations, GROS n This is especia For gamma distributed detected data, BTVs ar	0.177 Statistics us at has > 50% mall such as nethod may ally true whe nd UCLs ma	sing Imputed Non-Detects 5 NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs	
273 274 275 276 277 277 278 279 280	Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when kstar of detects is s For such situations, GROS n This is especia	0.177 Statistics us at has > 50% small such as nethod may ally true whe nd UCLs ma 0.01	sing Imputed Non-Detects 6 NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs en the sample size is small. by be computed using gamma distribution on KM estimates Mean	0.0687
273 274 275 276 277 278 279 280 281	Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when kstar of detects is s For such situations, GROS n This is especia For gamma distributed detected data, BTVs ar Minimum Maximum	0.177 Statistics us at has > 50% mall such as nethod may ally true whe nd UCLs ma 0.01 0.434	sing Imputed Non-Detects 6 NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs en the sample size is small. ay be computed using gamma distribution on KM estimates Mean Median	0.0687
273 274 275 276 277 278 279 280 281 282	Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when kstar of detects is s For such situations, GROS n This is especia For gamma distributed detected data, BTVs ar Minimum Maximum SD	0.177 Statistics us et has > 50% mall such as nethod may ally true whe nd UCLs ma 0.01 0.434 0.105	sing Imputed Non-Detects 6 NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs en the sample size is small. by be computed using gamma distribution on KM estimates Mean	0.0687 0.01 1.524
273 274 275 276 277 278 279 280 281 282 283	Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when kstar of detects is s For such situations, GROS n This is especia For gamma distributed detected data, BTVs ar Minimum Maximum SD k hat (MLE)	0.177 Statistics us at has > 50% small such as nethod may ally true whe nd UCLs ma 0.01 0.434 0.105 0.632	sing Imputed Non-Detects 6 NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs en the sample size is small. by be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE)	0.0687 0.01 1.524 0.601
273 274 275 276 277 278 279 280 280 281 282 283 283 284	Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when kstar of detects is s For such situations, GROS n This is especia For gamma distributed detected data, BTVs ar Minimum Maximum SD k hat (MLE) Theta hat (MLE)	0.177 Statistics us et has > 50% mall such as nethod may ally true whe nd UCLs ma 0.01 0.434 0.105 0.632 0.109	sing Imputed Non-Detects 6 NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs en the sample size is small. by be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE)	0.0687 0.01 1.524 0.601 0.114
273 274 275 276 277 278 279 280 281 282 283 283 284 285	Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when kstar of detects is s For such situations, GROS n This is especia For gamma distributed detected data, BTVs ar Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE)	0.177 Statistics us et has > 50% small such as nethod may ally true whe nd UCLs ma 0.01 0.434 0.105 0.632 0.109 50.55	sing Imputed Non-Detects 6 NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs en the sample size is small. by be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE)	0.0687 0.01 1.524 0.601
273 274 275 276 277 278 279 280 281 281 282 283 283 284 285 286	Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when kstar of detects is s For such situations, GROS m This is especia For gamma distributed detected data, BTVs ar Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β)	0.177 Statistics us et has > 50% mall such as nethod may ally true whe nd UCLs ma 0.01 0.434 0.105 0.632 0.109 50.55 0.044	sing Imputed Non-Detects 6 NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs en the sample size is small. by be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	0.0687 0.01 1.524 0.601 0.114 48.09
273 274 275 276 277 278 279 280 281 282 283 283 284 285 286 287	Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when kstar of detects is s For such situations, GROS m This is especia For gamma distributed detected data, BTVs ar Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (48.09, α)	0.177 Statistics us et has > 50% small such as nethod may ally true whe nd UCLs ma 0.01 0.434 0.105 0.632 0.109 50.55 0.044 33.17	sing Imputed Non-Detects 6 NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs en the sample size is small. by be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (48.09, β)	0.0687 0.01 1.524 0.601 0.114 48.09 32.71
273 274 275 276 277 278 279 280 281 283 283 283 283 283 283 284 285 286 287 288	Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when kstar of detects is s For such situations, GROS m This is especia For gamma distributed detected data, BTVs ar Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β)	0.177 Statistics us et has > 50% mall such as nethod may ally true whe nd UCLs ma 0.01 0.434 0.105 0.632 0.109 50.55 0.044	sing Imputed Non-Detects 6 NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs en the sample size is small. by be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	0.0687 0.01 1.524 0.601 0.114 48.09
273 274 275 276 277 278 279 280 281 282 283 284 285 284 285 286 287 288 288	Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when kstar of detects is s For such situations, GROS m This is especia For gamma distributed detected data, BTVs ar Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (48.09, α) 95% Gamma Approximate UCL (use when n>=50)	0.177 Statistics us et has > 50% small such as nethod may ally true whe nd UCLs ma 0.01 0.434 0.105 0.632 0.109 50.55 0.044 33.17 0.0996	sing Imputed Non-Detects 6 NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs en the sample size is small. by be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (48.09, β) 95% Gamma Adjusted UCL (use when n<50)	0.0687 0.01 1.524 0.601 0.114 48.09 32.71
273 274 275 276 277 278 279 280 281 283 283 283 283 283 283 283 283 285 286 287 288 288 289 290	Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when kstar of detects is s For such situations, GROS m This is especia For gamma distributed detected data, BTVs ar Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (48.09, α) 95% Gamma Approximate UCL (use when n>=50) Estimates of Ga	0.177 Statistics us et has > 50% mall such as nethod may ally true whe nd UCLs ma 0.01 0.434 0.105 0.632 0.109 50.55 0.044 33.17 0.0996 amma Param	sing Imputed Non-Detects 6 NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs en the sample size is small. by be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected MLE) Adjusted Chi Square Value (48.09, β) 95% Gamma Adjusted UCL (use when n<50) meters using KM Estimates	0.0687 0.01 1.524 0.601 0.114 48.09 32.71 0.101
273 274 275 276 277 278 279 280 281 282 283 284 285 284 285 286 287 286 287 288 288 289 289 290	Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when kstar of detects is s For such situations, GROS m This is especia For gamma distributed detected data, BTVs ar Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (48.09, α) 95% Gamma Approximate UCL (use when n>=50) Estimates of Ga Mean (KM)	0.177 Statistics us at has > 50% mall such as nethod may ally true whe nd UCLs ma 0.01 0.434 0.105 0.632 0.109 50.55 0.044 33.17 0.0996 amma Parar 0.105	sing Imputed Non-Detects 6 NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs en the sample size is small. by be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) Nu star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (48.09, β) 95% Gamma Adjusted UCL (use when n<50) meters using KM Estimates	0.0687 0.01 1.524 0.601 0.114 48.09 32.71 0.101 0.0846
273 274 275 276 277 278 279 280 281 282 283 283 284 285 285 286 287 288 288 289 288 289 290 291 292	Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when kstar of detects is s For such situations, GROS m This is especia For gamma distributed detected data, BTVs ar Minimum Maximum SD k hat (MLE) Theta hat (MLE) Nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (48.09, α) 95% Gamma Approximate UCL (use when n>=50) Estimates of Ga Mean (KM) Variance (KM)	0.177 Statistics us et has > 50% mall such as nethod may ally true whe nd UCLs ma 0.01 0.434 0.105 0.632 0.109 50.55 0.044 33.17 0.0996 amma Paran 0.105 0.00715	sing Imputed Non-Detects 6 NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs en the sample size is small. by be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) Nu star (bias corrected MLE) nu star (bias corrected MLE) Adjusted Chi Square Value (48.09, β) 95% Gamma Adjusted UCL (use when n<50) meters using KM Estimates SD (KM) SE of Mean (KM)	0.0687 0.01 1.524 0.601 0.114 48.09 32.71 0.101 32.71 0.101
273 274 275 276 277 278 279 280 281 283 284 285 284 285 286 287 288 288 288 288 288 288 289 289 290 291 292	Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when kstar of detects is s For such situations, GROS m This is especia For gamma distributed detected data, BTVs ar Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Nu hat (MLE) Adjusted Level of Significance (ß) Approximate Chi Square Value (48.09, a) 95% Gamma Approximate UCL (use when n>=50) Estimates of Ga Mean (KM) Variance (KM) k hat (KM)	0.177 Statistics us at has > 50% mall such as nethod may ally true whe nd UCLs ma 0.01 0.434 0.105 0.632 0.109 50.55 0.044 33.17 0.0996 amma Parar 0.105 0.00715 1.539	sing Imputed Non-Detects is NDs with many tied observations at multiple DLs is <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs in the sample size is small. ay be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (48.09, β) 95% Gamma Adjusted UCL (use when n<50) meters using KM Estimates SD (KM) SE of Mean (KM) k star (KM)	0.0687 0.01 1.524 0.601 0.114 48.09 32.71 0.101 32.71 0.101 0.0846 0.0139 1.44
273 274 275 276 277 278 279 280 281 282 283 284 285 285 286 287 288 288 289 288 289 290 291 291 292 293 293	Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when kstar of detects is s For such situations, GROS n This is especia For gamma distributed detected data, BTVs ar Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (48.09, α) 95% Gamma Approximate UCL (use when n>=50) Estimates of Ga Mean (KM) Variance (KM) k hat (KM) nu hat (KM)	0.177 Statistics us et has > 50% mall such as nethod may ally true whe nd UCLs ma 0.01 0.434 0.105 0.632 0.109 50.55 0.044 33.17 0.0996 amma Parar 0.105 0.00715 1.539 123.1	sing Imputed Non-Detects is NDs with many tied observations at multiple DLs is <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs in the sample size is small. by be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) Nu star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (48.09, β) 95% Gamma Adjusted UCL (use when n<50) meters using KM Estimates SD (KM) SE of Mean (KM) k star (KM) nu star (KM)	0.0687 0.01 1.524 0.601 0.114 48.09 32.71 0.101 32.71 0.101 0.101 0.0846 0.0139 1.44 115.2
273 274 275 276 277 278 279 280 281 283 284 283 284 285 286 287 288 288 288 288 289 288 289 289 290 291 291 292 293 292	Mean (detects) Gamma ROS GROS may not be used when data set GROS may not be used when kstar of detects is s For such situations, GROS m This is especial For gamma distributed detected data, BTVs ar Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (48.09, α) 95% Gamma Approximate UCL (use when n>=50) Estimates of Gamma (KM) Variance (KM) k hat (KM) nu hat (KM)	0.177 Statistics us et has > 50% mall such as nethod may ally true whe nd UCLs ma 0.01 0.434 0.105 0.632 0.109 50.55 0.044 33.17 0.0996 amma Parar 0.105 0.00715 1.539 123.1 0.0682	sing Imputed Non-Detects is NDs with many tied observations at multiple DLs is <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs in the sample size is small. any be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) Nu star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (48.09, β) 95% Gamma Adjusted UCL (use when n<50) meters using KM Estimates SD (KM) SE of Mean (KM) k star (KM) nu star (KM) Nu star (KM)	0.0687 0.01 1.524 0.601 0.114 48.09 32.71 0.101 32.71 0.101 0.0139 1.44 115.2 0.0729
273 274 275 276 277 278 279 280 281 282 283 284 285 284 285 286 287 288 288 289 290 291 292 291 292 293 293 294 295 296	Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when kstar of detects is s For such situations, GROS n This is especia For gamma distributed detected data, BTVs ar Minimum Maximum SD k hat (MLE) k hat (MLE) k hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (48.09, α) 95% Gamma Approximate UCL (use when n>=50) Estimates of Ga Mean (KM) Variance (KM) k hat (KM) nu hat (KM) S0% gamma percentile (KM)	0.177 Statistics us et has > 50% mall such as nethod may ally true whe nd UCLs ma 0.01 0.434 0.105 0.632 0.109 50.55 0.044 33.17 0.0996 amma Parar 0.105 0.00715 1.539 123.1 0.0682 0.163	sing Imputed Non-Detects 5 NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs an the sample size is small. by be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (48.09, β) 95% Gamma Adjusted UCL (use when n<50) meters using KM Estimates SD (KM) SE of Mean (KM) k star (KM) nu star (KM) theta star (KM) 90% gamma percentile (KM)	0.0687 0.01 1.524 0.601 0.114 48.09 32.71 0.101 32.71 0.101 0.0846 0.0139 1.44 115.2 0.0729 0.221
273 274 275 277 277 278 279 280 280 281 282 283 284 283 284 285 285 286 287 288 288 288 288 289 290 291 291 292 293 293 293 293 294 295 295	Mean (detects) Gamma ROS GROS may not be used when data set GROS may not be used when kstar of detects is s For such situations, GROS m This is especial For gamma distributed detected data, BTVs ar Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (48.09, α) 95% Gamma Approximate UCL (use when n>=50) Estimates of Gamma (KM) Variance (KM) k hat (KM) nu hat (KM)	0.177 Statistics us et has > 50% mall such as nethod may ally true whe nd UCLs ma 0.01 0.434 0.105 0.632 0.109 50.55 0.044 33.17 0.0996 amma Parar 0.105 0.00715 1.539 123.1 0.0682	sing Imputed Non-Detects is NDs with many tied observations at multiple DLs is <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs in the sample size is small. any be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) Nu star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (48.09, β) 95% Gamma Adjusted UCL (use when n<50) meters using KM Estimates SD (KM) SE of Mean (KM) k star (KM) nu star (KM) Nu star (KM)	0.0687 0.01 1.524 0.601 0.114 48.09 32.71 0.101 32.71 0.101 0.0139 1.44 115.2 0.0729

\square	A B C D E	F Kanlan-M	G H I J K I	L
301	Approximate Chi Square Value (115.21, α)	91.43	Adjusted Chi Square Value (115.21, β)	90.64
302	95% Gamma Approximate KM-UCL (use when n>=50)	0.132	95% Gamma Adjusted KM-UCL (use when n<50)	0.133
303		0.132	95% Gamma Aujusteu Kin-OCL (use when h<50)	0.133
304		E Toot on F	Detected Observations Only	
305	-			
306	Shapiro Wilk Test Statistic	0.911	Shapiro Wilk GOF Test	
307	5% Shapiro Wilk Critical Value	0.874	Detected Data appear Lognormal at 5% Significance Lev	/el
308	Lilliefors Test Statistic	0.204	Lilliefors GOF Test	
309	5% Lilliefors Critical Value	0.226	Detected Data appear Lognormal at 5% Significance Lev	/el
310	Detected Data ap	pear Logno	ormal at 5% Significance Level	
311				
312	_		Using Imputed Non-Detects	
313	Mean in Original Scale	0.0783	Mean in Log Scale	-3.217
314	SD in Original Scale	0.1	SD in Log Scale	1.195
315	95% t UCL (assumes normality of ROS data)	0.105	95% Percentile Bootstrap UCL	0.105
316	95% BCA Bootstrap UCL	0.11	95% Bootstrap t UCL	0.115
317	95% H-UCL (Log ROS)	0.136		
318	1		· · · ·	
319	Statistics using KM estimates of	on Logged	Data and Assuming Lognormal Distribution	
320	KM Mean (logged)	-2.434	KM Geo Mean	0.0876
321	KM SD (logged)	0.517	95% Critical H Value (KM-Log)	1.934
322	KM Standard Error of Mean (logged)	0.0849	95% H-UCL (KM -Log)	0.118
323	KM SD (logged)	0.517	95% Critical H Value (KM-Log)	1.934
324	KM Standard Error of Mean (logged)	0.0849		
325				
326		DL/2 S	Statistics	
327	DL/2 Normal		DL/2 Log-Transformed	
328	Mean in Original Scale	0.0837	Mean in Log Scale	-2.879
329	SD in Original Scale	0.0963	SD in Log Scale	0.801
330	95% t UCL (Assumes normality)	0.109	95% H-Stat UCL	0.103
331	DL/2 is not a recommended me	thod, prov	ided for comparisons and historical reasons	
332				
333	Nonparamet	tric Distribu	ution Free UCL Statistics	
	Detected Data appear Approx	ximate Ga	mma Distributed at 5% Significance Level	
334 225				
335		Suggested	UCL to Use	
336	95% KM Adjusted Gamma UCL	0.133	95% GROS Adjusted Gamma UCL	0.101
337	-,			
338	When a data set follows an approxit	mate (e.a.	normal) distribution passing one of the GOF test	
339			a distribution (e.g., gamma) passing both GOF tests in ProUCL	
340				
341	Note: Suggestions regarding the selection of a 95%	UCL are n	rovided to help the user to select the most appropriate 95% UCL.	
342			ta size, data distribution, and skewness.	
343		-	nulation studies summarized in Singh, Maichle, and Lee (2006).	
344			ets; for additional insight the user may want to consult a statisticiar	
345	However, simulations results will hot cover all Real We	uald St	so, for additional maight the user may wall to consult a stallsticial	
346	Ponzolhifluoranthono			
347	Benzo[b]fluoranthene			
348		0	Chatiatian	
349			Statistics	10
350	Total Number of Observations	40	Number of Distinct Observations	16

	A B C D E	F	G H I J K	L
351	Number of Detects	14	Number of Non-Detects	26
352	Number of Distinct Detects	14	Number of Distinct Non-Detects	2
353	Minimum Detect	0.094	Minimum Non-Detect	0.066
354	Maximum Detect	0.655	Maximum Non-Detect	0.067
355	Variance Detects	0.0437	Percent Non-Detects	65%
356	Mean Detects	0.286	SD Detects	0.209
357	Median Detects	0.177	CV Detects	0.73
358	Skewness Detects	0.825	Kurtosis Detects	-0.979
359	Mean of Logged Detects	-1.499	SD of Logged Detects	0.729
360				
361			t on Detects Only	
362	Shapiro Wilk Test Statistic	0.821	Shapiro Wilk GOF Test	
363	5% Shapiro Wilk Critical Value	0.874	Detected Data Not Normal at 5% Significance Level	
364	Lilliefors Test Statistic	0.267	Lilliefors GOF Test	
365	5% Lilliefors Critical Value	0.226	Detected Data Not Normal at 5% Significance Level	
366	Detected Data	Not Norma	l at 5% Significance Level	
367				
368	· · · ·	-	ritical Values and other Nonparametric UCLs	
369	KM Mean	0.143	KM Standard Error of Mean	0.0261
370	KM SD	0.159	95% KM (BCA) UCL	0.189
371	95% KM (t) UCL	0.187	95% KM (Percentile Bootstrap) UCL	0.188
372	95% KM (z) UCL	0.186	95% KM Bootstrap t UCL	0.206
373	90% KM Chebyshev UCL	0.221	95% KM Chebyshev UCL	0.257
374	97.5% KM Chebyshev UCL	0.306	99% KM Chebyshev UCL	0.402
375				
376			etected Observations Only	
377	A-D Test Statistic	0.761	Anderson-Darling GOF Test	
378	5% A-D Critical Value	0.745	Detected Data Not Gamma Distributed at 5% Significance	Level
379	K-S Test Statistic	0.229	Kolmogorov-Smirnov GOF	
380	5% K-S Critical Value	0.231	Detected data appear Gamma Distributed at 5% Significance	e Level
381	Detected data follow App	or. Gamma I	Distribution at 5% Significance Level	
382		o		
383			Detected Data Only	4 75
384	k hat (MLE)	2.166	k star (bias corrected MLE)	1.75
385	Theta hat (MLE)	0.132	Theta star (bias corrected MLE)	0.164
386	nu hat (MLE)	60.65	nu star (bias corrected)	48.99
387	Mean (detects)	0.286		
388	0 500	Ototioti	ing Imputed Nen Detecto	
389			sing Imputed Non-Detects	
390	-		NDs with many tied observations at multiple DLs	
391	-		s <1.0, especially when the sample size is small (e.g., <15-20)	
392			yield incorrect values of UCLs and BTVs	
393		-	n the sample size is small.	
394	-		y be computed using gamma distribution on KM estimates	0 107
395	Minimum	0.01	Mean	0.107
396	Maximum	0.655	Median	0.01
397	SD	0.18	CV	1.687
200	k hat (MLE)	0.497	k star (bias corrected MLE)	0.476
398		0.015		
398 399 400	Theta hat (MLE) nu hat (MLE)	0.215	Theta star (bias corrected MLE) nu star (bias corrected)	38.09

	A B C D E	F	G H I J K	1
401	Adjusted Level of Significance (β)	0.044		Ŀ
401	Approximate Chi Square Value (38.09, α)	24.96	Adjusted Chi Square Value (38.09, β)	24.56
403	95% Gamma Approximate UCL (use when n>=50)	0.163	95% Gamma Adjusted UCL (use when n<50)	0.165
404				
405	Estimates of Ga	amma Para	meters using KM Estimates	
405	Mean (KM)	0.143	SD (KM)	0.159
400	Variance (KM)	0.0252	SE of Mean (KM)	0.0261
407	k hat (KM)	0.811	k star (KM)	0.767
408	nu hat (KM)	64.89	nu star (KM)	61.35
410	theta hat (KM)	0.176	theta star (KM)	0.187
411	80% gamma percentile (KM)	0.234	90% gamma percentile (KM)	0.351
411	95% gamma percentile (KM)	0.471	99% gamma percentile (KM)	0.755
412				
	Gamma	a Kaplan-M	eier (KM) Statistics	
414	Approximate Chi Square Value (61.35, α)	44.34	Adjusted Chi Square Value (61.35, β)	43.8
415	95% Gamma Approximate KM-UCL (use when n>=50)	0.198	95% Gamma Adjusted KM-UCL (use when n<50)	0.2
416				
417	Lognormal GOI	F Test on D	etected Observations Only	
418 419	Shapiro Wilk Test Statistic	0.885	Shapiro Wilk GOF Test	
	5% Shapiro Wilk Critical Value	0.874	Detected Data appear Lognormal at 5% Significance Le	evel
420	Lilliefors Test Statistic	0.191	Lilliefors GOF Test	
421	5% Lilliefors Critical Value	0.226	Detected Data appear Lognormal at 5% Significance Le	evel
422		pear Logno	rmal at 5% Significance Level	
423	· · · · · · · · · · · · · · · · · · ·		•	
424	Lognormal ROS	Statistics	Using Imputed Non-Detects	
425	Mean in Original Scale	0.119	Mean in Log Scale	-3.048
426	SD in Original Scale	0.174	SD in Log Scale	1.416
427	95% t UCL (assumes normality of ROS data)	0.165	95% Percentile Bootstrap UCL	0.167
428 429	95% BCA Bootstrap UCL	0.173	95% Bootstrap t UCL	0.182
429	95% H-UCL (Log ROS)	0.252		
430				
431	Statistics using KM estimates of	on Logged I	Data and Assuming Lognormal Distribution	
432	KM Mean (logged)	-2.292	KM Geo Mean	0.101
433	KM SD (logged)	0.715	95% Critical H Value (KM-Log)	2.105
434	KM Standard Error of Mean (logged)	0.117	95% H-UCL (KM -Log)	0.166
435	KM SD (logged)	0.715	95% Critical H Value (KM-Log)	2.105
430	KM Standard Error of Mean (logged)	0.117		
437			<u> </u>	
438 439		DL/2 S	tatistics	
439 440	DL/2 Normal		DL/2 Log-Transformed	
	Mean in Original Scale	0.122	Mean in Log Scale	-2.736
441 442	SD in Original Scale	0.172	SD in Log Scale	1.011
442	95% t UCL (Assumes normality)	0.168	95% H-Stat UCL	0.16
443	· · · · · · · · · · · · · · · · · · ·	thod, provi	ded for comparisons and historical reasons	
444 445				
445 446	Nonparamet	tric Distribu	tion Free UCL Statistics	
446 447			nma Distributed at 5% Significance Level	
447				
		Suggested	UCL to Use	
449 450	95% KM Adjusted Gamma UCL	0.2	95% GROS Adjusted Gamma UCL	0.165
450	······································		······································	

	A B C D E	F	G	Н			J	1	К		<u> </u>
451		•	ų				0		IX	<u> </u>	<u> </u>
452	When a data set follows an approxi	imate (e.g., i	normal) distril	bution pass	ing one of t	he GO	F test				
453	When applicable, it is suggested to use a UCL ba	ased upon a	distribution (e.g., gamma	a) passing	both G	OF test	s in Pr	oUCL		
454											
455	Note: Suggestions regarding the selection of a 95%	UCL are pr	ovided to help	p the user to	o select the	most	approp	iate 95	5% UCL		
456	Recommendations are bas	ed upon dat	a size, data c	listribution,	and skewn	ess.					
457	These recommendations are based upon the resul	Its of the sim	ulation studie	es summari	zed in Sing	ıh, Mai	chle, ar	d Lee	(2006).		
458	However, simulations results will not cover all Real W	orld data se	ts; for additio	nal insight t	he user ma	iy wan	to con	sult a s	tatistici	an.	
459											
460	Dibenz(a,h)anthracene										
461											
462			Statistics								
463	Total Number of Observations	40			Numb		Distinct			5	
464	Number of Detects	3				-	mber of	-		37	
465	Number of Distinct Detects	3			Num		Distinct			2	
466	Minimum Detect	0.076					Minimu	-			066
467	Maximum Detect	0.097					laximu	-		-	067
468							Percent	-			2.5%
469	Mean Detects	0.0837							Detects		0116
470	Median Detects	0.078							Detects		.139
471	Skewness Detects	1.674							Detects	N//	
472	Mean of Logged Detects	-2.487				S	D of Lo	gged D	Detects	0	.134
473											
474	-		only 3 Detec								
475	This is not enough to comp	oute meanin	gful or reliab	le statistics	and estim	ates.					
476											
477	hloren		t an Data ata	Only							
478			t on Detects	Only	Ohanina)	A/:114 O					
479	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	0.821	De	tected Data	Shapiro \			-			
480	Lilliefors Test Statistic	0.767	De					gninca	nce Le		
481	5% Lilliefors Critical Value		De	tested Date				anifica			
482	5% Lilierors Critical Value Detected Data a	0.425		tected Data	••	ormai a	11 5% 5	gninca	nce Le	/ei	
483		арреагион	iai at 5% Sig								
484	Kaplan-Meier (KM) Statistics usir	a Normal C	ritical Value	and other	Nonnaram	otric I					
485	KM Mean	0.0673					andard		f Moon	0.0	00103
486	KM SD	0.00533					95% K			N//	
487	95% KM (t) UCL	0.0691			95% KM			•	,	N//	
488	95% KM (z) UCL	0.069					KM Bo		,	N//	
489	90% KM Chebyshev UCL	0.0704					KM Ch				0718
490	97.5% KM Chebyshev UCL	0.0738					KM Ch	•			0776
491						5070					
492	Gamma GOF	Tests on De	etected Obse	rvations O	nly						
493			Perform GC		•						
494 405		-g									
495	Gamma	Statistics or	Detected D	ata Onlv							
496	k hat (MLE)	81.83		· - · · · · · · · · · · · · · · · · · ·		k star	bias co	rrected	MLE)	N//	A
497 408	Theta hat (MLE)	0.00102					bias co		,	N//	
498	nu hat (MLE)	491					star (bi			N//	
499 500	Mean (detects)	0.0837					()		- /		
500		-									

	A B C D E	F	G H I J K	L					
501		·							
502	Gamma ROS	Statistics us	sing Imputed Non-Detects						
503	GROS may not be used when data s	et has > 50%	NDs with many tied observations at multiple DLs						
504	GROS may not be used when kstar of detects is	small such as	s <1.0, especially when the sample size is small (e.g., <15-20)						
505	For such situations, GROS	method may	yield incorrect values of UCLs and BTVs						
506	This is especi	ally true whe	en the sample size is small.						
507	For gamma distributed detected data, BTVs a	and UCLs ma	y be computed using gamma distribution on KM estimates						
508	Minimum	0.01	Mean	0.0242					
509	Maximum	0.097	Median	0.01					
510	SD	0.0221	CV	0.914					
511	k hat (MLE)	1.781	k star (bias corrected MLE)	1.665					
512	Theta hat (MLE)	0.0136	Theta star (bias corrected MLE)	0.0145					
513	nu hat (MLE)	142.5	nu star (bias corrected)	133.2					
514	Adjusted Level of Significance (β)	0.044							
515	Approximate Chi Square Value (133.16, α)	107.5	Adjusted Chi Square Value (133.16, β)	106.6					
516	95% Gamma Approximate UCL (use when n>=50)	0.03	95% Gamma Adjusted UCL (use when n<50)	N/A					
517		1	·						
518	Estimates of G	iamma Parar	meters using KM Estimates						
519	Mean (KM)	0.0673	SD (KM)	0.00533					
520	Variance (KM)	2.8369E-5	SE of Mean (KM)	0.00103					
521	k hat (KM)	159.8	k star (KM)	147.8					
522	nu hat (KM)	12782	nu star (KM)	11825					
523	theta hat (KM)	4.2138E-4	theta star (KM)	4.5549E-4					
524	80% gamma percentile (KM)	0.0719	90% gamma percentile (KM)	0.0745					
525	95% gamma percentile (KM)	0.0767	99% gamma percentile (KM)	0.0809					
526		1	· ·						
527	Gamm	na Kaplan-Mo	eier (KM) Statistics						
528	Approximate Chi Square Value (N/A, α)	11573	Adjusted Chi Square Value (N/A, β)	11563					
529	95% Gamma Approximate KM-UCL (use when n>=50)	0.0688	95% Gamma Adjusted KM-UCL (use when n<50)	0.0688					
530			0.0688 95% Gamma Adjusted KM-UCL (use when n<50)						
531									
~~ .	Lognormal GC	OF Test on D	etected Observations Only						
	Lognormal GC Shapiro Wilk Test Statistic		etected Observations Only Shapiro Wilk GOF Test						
532		0.829	-	evel					
532 533	Shapiro Wilk Test Statistic	0.829 0.767	Shapiro Wilk GOF Test	evel					
532	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	0.829 0.767 0.35	Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance L						
532 533 534	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value	0.829 0.767 0.35 0.425	Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance L Lilliefors GOF Test						
532 533 534 535	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value	0.829 0.767 0.35 0.425	Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance L Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance L						
532 533 534 535 536	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data ap Lognormal RO	0.829 0.767 0.35 0.425 opear Lognor	Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance L Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance L rmal at 5% Significance Level Using Imputed Non-Detects	evel					
532 533 534 535 536 537	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data ap Lognormal RO Mean in Original Scale	0.829 0.767 0.35 0.425 opear Lognor S Statistics I 0.0367	Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance L Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance L rmal at 5% Significance Level Using Imputed Non-Detects Mean in Log Scale	evel -3.415					
532 533 534 535 536 537 538	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data ap Lognormal RO Mean in Original Scale SD in Original Scale	0.829 0.767 0.35 0.425 opear Lognor S Statistics (0.0367 0.0184	Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance L Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance L rmal at 5% Significance Level Using Imputed Non-Detects Mean in Log Scale SD in Log Scale	evel -3.415 0.471					
532 533 534 535 536 537 538 539	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data ap Lognormal RO Mean in Original Scale	0.829 0.767 0.35 0.425 opear Lognor S Statistics I 0.0367	Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance L Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance L rmal at 5% Significance Level Using Imputed Non-Detects Mean in Log Scale	evel -3.415					
532 533 534 535 536 537 538 539 540	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data ap Lognormal RO Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL	0.829 0.767 0.35 0.425 opear Lognor S Statistics I 0.0367 0.0184 0.0416 0.0424	Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance L Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance L rmal at 5% Significance Level Using Imputed Non-Detects Mean in Log Scale SD in Log Scale	evel -3.415 0.471					
532 533 534 535 536 537 538 538 539 540 541	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data ap Lognormal RO Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data)	0.829 0.767 0.35 0.425 opear Lognor S Statistics I 0.0367 0.0184 0.0416	Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance L Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance L rmal at 5% Significance Level Using Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL	evel -3.415 0.471 0.0419					
532 533 534 535 536 537 538 539 540 542	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data ap Lognormal RO Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS)	0.829 0.767 0.35 0.425 opear Lognor S Statistics I 0.0367 0.0184 0.0416 0.0424 0.0424	Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance L Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance L rmal at 5% Significance Level Using Imputed Non-Detects Using Imputed Non-Detects SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL	evel -3.415 0.471 0.0419					
532 533 534 535 536 537 538 538 539 540 541 542 543	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data ap Lognormal RO Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates	0.829 0.767 0.35 0.425 opear Lognor S Statistics U 0.0367 0.0184 0.0416 0.0424 0.0424 0.0424	Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance L Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance L rmal at 5% Significance Level Using Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL	evel -3.415 0.471 0.0419					
532 533 534 535 536 537 538 539 540 541 542 543 544	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data ap Lognormal RO Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates KM Mean (logged)	0.829 0.767 0.35 0.425 opear Lognor S Statistics U 0.0367 0.0184 0.0416 0.0424 0.0424 0.0424	Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance L Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance L rmal at 5% Significance Level Using Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL	evel -3.415 0.471 0.0419					
532 533 534 535 536 537 538 539 540 541 542 543 544 545	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data ap Lognormal RO Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates	0.829 0.767 0.35 0.425 opear Lognor S Statistics U 0.0367 0.0184 0.0416 0.0424 0.0424 0.0424	Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance L Detected Data appear Lognormal at 5% Significance L rmal at 5% Significance Level Using Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL Data and Assuming Lognormal Distribution	evel -3.415 0.471 0.0419 0.0425					
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data ap Lognormal RO Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates KM Mean (logged)	0.829 0.767 0.35 0.425 opear Lognor S Statistics I 0.0367 0.0184 0.0416 0.0424 0.0424 0.0424 0.0424	Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance L Detected Data appear Lognormal at 5% Significance L Implement Significance Level Using Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL Data and Assuming Lognormal Distribution	evel -3.415 0.471 0.0419 0.0425 0.0672					
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data ap Lognormal RO Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates KM Mean (logged) KM SD (logged)	0.829 0.767 0.35 0.425 opear Lognor S Statistics I 0.0367 0.0184 0.0416 0.0424 0.0424 on Logged I -2.701 0.0678 0.0131 0.0678	Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance L Detected Data appear Lognormal at 5% Significance L Implement Significance Level Using Imputed Non-Detects Wean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL Oata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log)	evel -3.415 0.471 0.0419 0.0425 0.0672 N/A					

	А	В	С	D	E	F	G	Н			J	K	L
551													
552						DL/2 S	Statistics						
553			DL/2	Normal					DL/2 L	.og-T	ransformed		
554				Mean in	Original Sca	e 0.0371					Mean	in Log Scale	-3.333
555				SD in	Original Sca	e 0.0137					SD	in Log Scale	0.246
556			95% t l	JCL (Assun	nes normality	/) 0.0408				6 H-Stat UCL	0.0394		
557			DL/2	is not a rec	ommended	method, provi	ided for con	nparisons an	d historic	cal re	asons		
558													
559						netric Distribu							
560				Detecte	ed Data app	ear Normal Di	stributed at	t 5% Significa	ance Leve	el			
561													
562							UCL to Us	e					1
563				95	% KM (t) UC	L 0.0691							
564													
565		Note: Sugge	-	-		5% UCL are p						iate 95% UCI	
566		T b				ased upon da							
567						sults of the sir				-			
568		owever, simu	liations resul	ts will not co	over all Real	World data se	ets; for addit	ional insight t	ne user r	nay v	want to cons	suit a statistic	lan.
569	Indono[1.2	,3-cd]pyrene											
570	indeno[1,2	,o-culpyrene	,										
571						General	Statistics						
572			Total	Number of	Observatior		Clausics		Nur	mher	of Distinct (Observations	11
573			10101		ber of Detec				inui			Non-Detects	30
574			N		stinct Detec				Nu	ımbe		Non-Detects	2
575					nimum Dete				110			n Non-Detect	0.066
576					ximum Dete							n Non-Detect	0.067
577					iance Detec						Percent	Non-Detects	75%
578					Mean Detec							SD Detects	0.108
579 580				М	edian Detec	ts 0.166						CV Detects	0.546
580 581					vness Detec						Kur	tosis Detects	-1.118
582				Mean of Lo	gged Detec	ts -1.749					SD of Log	gged Detects	0.542
583													
584					No	rmal GOF Te	st on Detec	ts Only					
585			S	hapiro Wilk	Test Statist	ic 0.862			Shapiro	o Wil	k GOF Tes	t	
586			5% S	hapiro Wilk	Critical Valu	e 0.842	[Detected Data	appear	Norn	nal at 5% Sig	gnificance Le	vel
587				Lilliefors	Test Statist	ic 0.249			Lillie	fors	GOF Test		
588			5	% Lilliefors	Critical Valu	e 0.262	[Detected Data	a appear	Norn	nal at 5% Sig	gnificance Le	vel
589				D	etected Dat	a appear Nori	mal at 5% S	Significance L	.evel				
590													
591			Kaplan-	Meier (KM)	Statistics u	sing Normal (Critical Valu	ies and other	Nonpara	amet	ric UCLs		
592					KM Mea	n 0.0992				ΚN	I Standard E	Error of Mean	0.0128
593					KM S							/I (BCA) UCL	0.121
594					% KM (t) UC				95% KI	•		otstrap) UCL	0.12
595					% KM (z) UC							otstrap t UCL	0.128
596					ebyshev UC							ebyshev UCL	0.155
597			97	.5% KM Ch	ebyshev UC	L 0.179				9	9% KM Che	ebyshev UCL	0.227
598								<u>_</u>					
599						F Tests on D	etected Ob		-				
600				A-D	Test Statist	ic 0.552			Anderson	n-Dar	ling GOF T	est	

601	A B C D E 5% A-D Critical Value	F 0.73	G H I J K Detected data appear Gamma Distributed at 5% Significance	L ce Level
601	K-S Test Statistic		Kolmogorov-Smirnov GOF	
602	5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significance	e Level
603			stributed at 5% Significance Level	
604 605			<u> </u>	
605	Gamma	Statistics or	n Detected Data Only	
606	k hat (MLE)		k star (bias corrected MLE)	2.812
607	Theta hat (MLE)		Theta star (bias corrected MLE)	0.0706
608	nu hat (MLE)		nu star (bias corrected)	56.23
609	Mean (detects)			
610				
611	Gamma RO	S Statistics u	sing Imputed Non-Detects	
612			6 NDs with many tied observations at multiple DLs	
613	-		s <1.0, especially when the sample size is small (e.g., <15-20)	
614	-		yield incorrect values of UCLs and BTVs	
615		-	en the sample size is small.	
616	•	•	ay be computed using gamma distribution on KM estimates	
617	Minimum		Mean	0.0584
618	Maximum		Median	0.0304
619	SD		CV	1.666
620	k hat (MLE)		k star (bias corrected MLE)	0.595
621	Theta hat (MLE)		Theta star (bias corrected MLE)	0.0981
622	nu hat (MLE)		nu star (bias corrected will)	47.6
623	Adjusted Level of Significance (β)			47.0
624	Approximate Chi Square Value (47.60, α)		Adjusted Chi Square Value (47.60, β)	32.3
625	95% Gamma Approximate UCL (use when n>=50)		95% Gamma Adjusted UCL (use when n<50)	0.086
626		0.0040		0.000
627	Estimates of (Gamma Para	meters using KM Estimates	
628 629	Mean (KM)		SD (KM)	0.0771
	Variance (KM)		SE of Mean (KM)	0.0128
630	k hat (KM)		k star (KM)	1.548
631 632	nu hat (KM)		nu star (KM)	123.8
632	theta hat (KM)		theta star (KM)	0.064
633	80% gamma percentile (KM)		90% gamma percentile (KM)	0.205
634 635	95% gamma percentile (KM)		99% gamma percentile (KM)	0.369
635				
636	Gamr	na Kaplan-M	eier (KM) Statistics	
637 638	Approximate Chi Square Value (123.85, a)	99.14	Adjusted Chi Square Value (123.85, β)	98.32
638 630	95% Gamma Approximate KM-UCL (use when n>=50)		95% Gamma Adjusted KM-UCL (use when n<50)	0.125
639	···		, , , , ,	
640	Lognormal G	OF Test on D	etected Observations Only	
641	Shapiro Wilk Test Statistic		Shapiro Wilk GOF Test	
642	5% Shapiro Wilk Critical Value		Detected Data appear Lognormal at 5% Significance Le	evel
643	Lilliefors Test Statistic		Lilliefors GOF Test	
644	5% Lilliefors Critical Value		Detected Data appear Lognormal at 5% Significance Le	evel
645			rmal at 5% Significance Level	-
646			•	
647	Loanormal RC	S Statistics	Using Imputed Non-Detects	
648	Mean in Original Scale		Mean in Log Scale	-3.334
649	SD in Original Scale		SD in Log Scale	1.201
650		5.0027		

	А	В	С	D	E	F	G	Н		J	K	L
651		95% t L	JCL (assume	s normality o	of ROS data)	0.0954			95% I	Percentile Be	ootstrap UCL	0.0962
652			9	95% BCA Bo	otstrap UCL	0.104				95% Bo	otstrap t UCL	0.104
653				95% H-UC	L (Log ROS)	0.122						
654												
655			Statis	tics using K	M estimates	on Logged I	Data and Ass	suming Logr	ormal Distri	bution		
656					ean (logged)	-2.476					M Geo Mean	0.0841
657				KM	SD (logged)	0.492			95% (Critical H Va	lue (KM-Log)	1.915
658			KM Standa		ean (logged)	0.082					CL (KM -Log)	0.11
659					SD (logged)	0.492			95% (Critical H Va	lue (KM-Log)	1.915
660			KM Standa	rd Error of M	ean (logged)	0.082						
661												
662						DL/2 S	tatistics					
663			DL/2	Normal					DL/2 Log-T	ransformed		
664					riginal Scale	0.0746					in Log Scale	-2.989
665					riginal Scale	0.0892					in Log Scale	0.77
666				•	es normality)	0.0984					6 H-Stat UCL	0.0884
667			DL/2 i	s not a reco	mmended m	ethod, provi	ded for comp	parisons and	historical re	asons		
668												
669					•		tion Free UC					
670				Detected	l Data appea	r Normal Di	stributed at 5	5% Significa	nce Level			
671												
672							UCL to Use					
673				95%	5 KM (t) UCL	0.121						
674												
675	1	Note: Sugge		-				•			iate 95% UCL	
676					ations are bas	•						
677					•						d Lee (2006).	
678	Ho	wever, simu	lations result	s will not cov	ver all Real W	orld data se	ts; for additio	nal insight th	ne user may	want to cons	sult a statistici	an.
679												

TABLE C-4A CONSTITUENT-SPECIFIC FACTORS FORMER CARR CHINA MANUFACTURING FACILITY GRAFTON, WEST VIRGINIA VRP PROJECT # 20019

					Constituent-Sp	ecific Informa	tion ⁽¹⁾				
Contaminants of Concern	Soil EPC (mg/kg)	Soil VF (m ³ /kg)	RBA (unitless) ⁽²⁾	Dermal ABS (unitless)	Gastrointestinal Absorption Efficiency (unitless)	Oral RfD (mg/kg-day)	Derm RfD (mg/kg-day)	Inhal. RfC (mg/m ³)	Oral CSF (mg/kg-day) ⁻¹	Derm CSF (mg/kg-day) ⁻¹	IUR (mg/m ³) ⁻¹
Benzo[a]anthracene	0.14		1	0.13	1	NA	NA	NA	1.0E-01	1.0E-01	6.0E-02
Benzo[a]pyrene	0.13		1	0.13	1	3.0E-04	3.0E-04	2.0E-06	1.0E+00	1.0E+00	6.0E-01
Benzo[b]fluoranthene	0.20		1	0.13	1	NA	NA	NA	1.0E-01	1.0E-01	6.0E-02
Dibenz(a,h)anthracene	0.069		1	0.13	1	NA	NA	NA	1.0E+00	1.0E+00	6.0E-01
Indeno[1,2,3-cd]pyrene	0.12		1	0.13	1	NA	NA	NA	1.0E-01	1.0E-01	6.0E-02
Cobalt			1		1	3.0E-04	3.0E-04	6.0E-06	NA	NA	9.0E+00
Manganese			1		0.04	2.4E-02	9.6E-04	5.0E-05	NA	NA	NA
Vanadium			1		0.026	9.0E-03	2.3E-04	7.0E-06	NA	NA	8.3E+00
Mercury	5.46	2.9E+04	1		1	1.6E-04	1.6E-04	3.0E-04	NA	NA	NA

Notes:

1 - The source of the constituent-specific information presented in this table is described in Sections 3 and 4 of the report text.

2 - Relative Bioavailability Factor (RBA) that accounts for the differences in the bioavailability of a contaminant between the medium of exposure (e.g., soil) and the media associated with the toxicity value (e.g., the arsenic RfD and CSF are derived from drinking water studies). Based on USEPA (2021a) RSL User's Guide.

NA - USEPA-derived toxicity values are not available for this particular exposure route or endpoint.

TABLE C-4B HAZARD INDICES AND THEORETICAL EXCESS LIFETIME CANCER RISKS INCIDENTAL INGESTION AND DERMAL CONTACT WITH SOIL FORMER CARR CHINA MANUFACTURING FACILITY GRAFTON, WEST VIRGINIA VRP PROJECT # 20019

				INPUT P	ARAMETERS		
			INGESTION			DERMAL CONTACT	
		CF	1E-06	kg/mg	CF	1E-06	kg/mg
MEDIUM:	SOIL	IR	100	mg/day	AF	0.07	mg/cm ² -event
RECEPTOR:	FUTURE ADULT (AGE 16-26) RECREATOR	EF	250	days/year	ABS	See Table E-3A	unitless
		ED	10	years	EF	250	days/year
		FI	1	unitless	ED	10	years
		BW	80	kg	EV	1	events/day
		AT _{nc}	3650	days	SA	6032	cm ²
		AT _c	25550	days	BW	80	kg
					AT _{nc}	3650	days
					AT _c	25550	days

		Ingestion Exp	osure		Direct Dermal Contact				
Contaminants of Concern	Ingestion Intake Noncancer (mg/kg-day)	Ingestion Intake Cancer (mg/kg-day)	HQ	ELCR	Absorbed Dose Noncancer (mg/kg-day)	Absorbed Dose Cancer (mg/kg-day)	HQ	ELCR	
Benzo[a]anthracene	1.2E-07	1.7E-08	NA	2E-09	6.6E-08	9.4E-09	NA	9E-10	
Benzo[a]pyrene	1.1E-07	1.6E-08	4E-04	2E-08	6.3E-08	8.9E-09	2E-04	9E-09	
Benzo[b]fluoranthene	1.7E-07	2.4E-08	NA	2E-09	9.4E-08	1.3E-08	NA	1E-09	
Dibenz(a,h)anthracene	5.9E-08	8.5E-09	NA	8E-09	3.2E-08	4.6E-09	NA	5E-09	
Indeno[1,2,3-cd]pyrene	1.0E-07	1.5E-08	NA	1E-09	5.7E-08	8.1E-09	NA	8E-10	
Cobalt	0.0E+00	0.0E+00	0E+00	NA	0.0E+00	0.0E+00	0E+00	NA	
Manganese	0.0E+00	0.0E+00	0E+00	NA	0.0E+00	0.0E+00	0E+00	NA	
Vanadium	0.0E+00	0.0E+00	0E+00	NA	0.0E+00	0.0E+00	0E+00	NA	
Mercury	4.7E-06	6.7E-07	3E-02	NA	0.0E+00	0.0E+00	0E+00	NA	
TOTAL			3E-02	3E-08			2E-04	2E-08	

TABLE C-4C HAZARD INDICES AND THEORETICAL EXCESS LIFETIME CANCER RISKS INHALATION OF VOLATILE AND PARTICULATE EMISSIONS FORMER CARR CHINA MANUFACTURING FACILITY GRAFTON, WEST VIRGINIA VRP PROJECT # 20019

		INPUT PARAMETERS						
		FUG	ITIVE DUST INHALA	TION	INHALA	INHALATION - VOLATILE EMISSIONS		
		PEF	1.32E+09	m³/kg				
MEDIUM:	SOIL	EF	250	days/year	EF	250	days/year	
RECEPTOR:	FUTURE ADULT (AGE 16-26) RECREATOR	ED	10	years	ED	10	years	
		ET	4	hours/day	ET	4	hours/day	
		AT _{nc}	87600	hours	AT _{nc}	87600	hours	
		AT _c	613200	hours	AT _c	613200	hours	

		Fugitive Dust E	xposure			Volatile Emiss	ions Exposure	
	Inhalation EC Noncancer	Inhalation EC Cancer			Inhalation EC Noncancer	Inhalation EC Cancer		
Contaminants of Concern	(mg/m³)	(mg/m ³)	HQ	ELCR	(mg/m ³)	(mg/m ³)	HQ	ELCR
Benzo[a]anthracene	1.2E-11	1.7E-12	NA	1E-13	NA	NA	NA	NA
Benzo[a]pyrene	1.2E-11	1.6E-12	6E-06	1E-12	NA	NA	NA	NA
Benzo[b]fluoranthene	1.7E-11	2.5E-12	NA	1E-13	NA	NA	NA	NA
Dibenz(a,h)anthracene	6.0E-12	8.6E-13	NA	5E-13	NA	NA	NA	NA
Indeno[1,2,3-cd]pyrene	1.0E-11	1.5E-12	NA	9E-14	NA	NA	NA	NA
Cobalt	0.0E+00	0.0E+00	0E+00	0E+00	NA	NA	NA	NA
Manganese	0.0E+00	0.0E+00	0E+00	NA	NA	NA	NA	NA
Vanadium	0.0E+00	0.0E+00	0E+00	0E+00	NA	NA	NA	NA
Mercury	4.7E-10	6.8E-11	2E-06	NA	2.1E-05	3.1E-06	7E-02	NA
TOTAL			7E-06	2E-12			7E-02	0E+00

TABLE C-4D SUMMARY OF HAZARD INDICES AND THEORETICAL EXCESS LIFETIME CANCER RISKS FUTURE ADULT (AGE 16-26) RECREATOR FORMER CARR CHINA MANUFACTURING FACILITY GRAFTON, WEST VIRGINIA VRP PROJECT # 20019

	CONSTI	TUENT AND	PATHWAY SPEC	IFIC HQS		CONSTITU	JENT AND PA	THWAY SPECIF	IC CANCER	
Contaminants of Concern	Ingestion of Soil	Dermal Contact with Soil	Inhalation Particulates	Inhalation Volatiles (Soil)	TOTAL HAZARD INDEX	Ingestion of Soil	Dermal Contact with Soil	Inhalation Particulates	Inhalation Volatiles (Soil)	TOTAL CANCER RISK
Benzo[a]anthracene	NA	NA	NA	NA	0E+00	2E-09	9E-10	1E-13	NA	3E-09
Benzo[a]pyrene	4E-04	2E-04	6E-06	NA	6E-04	2E-08	9E-09	1E-12	NA	3E-08
Benzo[b]fluoranthene	NA	NA	NA	NA	0E+00	2E-09	1E-09	1E-13	NA	4E-09
Dibenz(a,h)anthracene	NA	NA	NA	NA	0E+00	8E-09	5E-09	5E-13	NA	1E-08
Indeno[1,2,3-cd]pyrene	NA	NA	NA	NA	0E+00	1E-09	8E-10	9E-14	NA	2E-09
Cobalt	0E+00	0E+00	0E+00	NA	0E+00	NA	NA	0E+00	NA	0E+00
Manganese	0E+00	0E+00	0E+00	NA	0E+00	NA	NA	NA	NA	0E+00
Vanadium	0E+00	0E+00	0E+00	NA	0E+00	NA	NA	0E+00	NA	0E+00
Mercury	3E-02	0E+00	2E-06	7E-02	1E-01	NA	NA	NA	NA	0E+00
TOTAL					1E-01					5E-08

TABLE C-5A CONSTITUENT-SPECIFIC FACTORS FORMER CARR CHINA MANUFACTURING FACILITY GRAFTON, WEST VIRGINIA VRP PROJECT # 20019

	il EPC	Soil VF	RBA		Gastrointestinal						
Contaminants of Concern (m	ng/kg)	(m ³ /kg)	(unitless) ⁽²⁾	Dermal ABS (unitless)	Absorption Efficiency (unitless)	Oral RfD (mg/kg-day)	Derm RfD (mg/kg-day)	Inhal. RfC (mg/m ³)	Oral CSF (mg/kg-day) ⁻¹	Derm CSF (mg/kg-day) ⁻¹	IUR (mg/m ³) ⁻¹
Benzo[a]anthracene C	0.14		1	0.13	1	NA	NA	NA	3.0E-01	3.0E-01	1.8E-01
Benzo[a]pyrene C	0.13		1	0.13	1	3.0E-04	3.0E-04	2.0E-06	3.0E+00	3.0E+00	1.8E+00
Benzo[b]fluoranthene 0	0.20		1	0.13	1	NA	NA	NA	3.0E-01	3.0E-01	1.8E-01
Dibenz(a,h)anthracene 0.	0.069		1	0.13	1	NA	NA	NA	3.0E+00	3.0E+00	1.8E+00
Indeno[1,2,3-cd]pyrene 0	0.12		1	0.13	1	NA	NA	NA	3.0E-01	3.0E-01	1.8E-01
Cobalt			1		1	3.0E-04	3.0E-04	6.0E-06	NA	NA	9.0E+00
Manganese			1		0.04	2.4E-02	9.6E-04	5.0E-05	NA	NA	NA
Vanadium			1		0.026	9.0E-03	2.3E-04	7.0E-06	NA	NA	8.3E+00
Mercury 5	5.46	2.9E+04	1		1	1.6E-04	1.6E-04	3.0E-04	NA	NA	NA

Notes:

Red italics indicate the CSF/IUR has been increased by a factor of 3 to account for mutagenic modes of action.

1 - The source of the constituent-specific information presented in this table is described in Sections 3 and 4 of the report text.

2 - Relative Bioavailability Factor (RBA) that accounts for the differences in the bioavailability of a contaminant between the medium of exposure (e.g., soil) and the media associated with the toxicity value (e.g., the arsenic RfD and CSF are derived from drinking water studies). Based on USEPA (2021a) RSL User's Guide.

NA - USEPA-derived toxicity values are not available for this particular exposure route or endpoint.

TABLE C-5B HAZARD INDICES AND THEORETICAL EXCESS LIFETIME CANCER RISKS INCIDENTAL INGESTION AND DERMAL CONTACT WITH SOIL FORMER CARR CHINA MANUFACTURING FACILITY GRAFTON, WEST VIRGINIA VRP PROJECT # 20019

				INPUT P	ARAMETERS		
			INGESTION			DERMAL CONTACT	
		CF	1E-06	kg/mg	CF	1E-06	kg/mg
MEDIUM:	SOIL	IR	100	mg/day	AF	0.07	mg/cm ² -event
RECEPTOR:	FUTURE ADULT (AGE 6-16) RECREATOR	EF	250	days/year	ABS	See Table E-4A	unitless
		ED	10	years	EF	250	days/year
		FI	1	unitless	ED	10	years
		BW	80	kg	EV	1	events/day
		AT _{nc}	3650	days	SA	6032	cm ²
		AT _c	25550	days	BW	80	kg
					AT _{nc}	3650	days
					ATc	25550	days

		Ingestion Exp	osure		Direct Dermal Contact				
Contaminants of Concern	Ingestion Intake Noncancer (mg/kg-day)	Ingestion Intake Cancer (mg/kg-day)	HQ	ELCR	Absorbed Dose Noncancer (mg/kg-day)	Absorbed Dose Cancer (mg/kg-day)	HQ	ELCR	
Benzo[a]anthracene	1.2E-07	1.7E-08	NA	5E-09	6.6E-08	9.4E-09	NA	3E-09	
Benzo[a]pyrene	1.1E-07	1.6E-08	4E-04	5E-08	6.3E-08	8.9E-09	2E-04	3E-08	
Benzo[b]fluoranthene	1.7E-07	2.4E-08	NA	7E-09	9.4E-08	1.3E-08	NA	4E-09	
Dibenz(a,h)anthracene	5.9E-08	8.5E-09	NA	3E-08	3.2E-08	4.6E-09	NA	1E-08	
Indeno[1,2,3-cd]pyrene	1.0E-07	1.5E-08	NA	4E-09	5.7E-08	8.1E-09	NA	2E-09	
Cobalt	0.0E+00	0.0E+00	0E+00	NA	0.0E+00	0.0E+00	0E+00	NA	
Manganese	0.0E+00	0.0E+00	0E+00	NA	0.0E+00	0.0E+00	0E+00	NA	
Vanadium	0.0E+00	0.0E+00	0E+00	NA	0.0E+00	0.0E+00	0E+00	NA	
Mercury	4.7E-06	6.7E-07	3E-02	NA	0.0E+00	0.0E+00	0E+00	NA	
TOTAL			3E-02	9E-08			2E-04	5E-08	

TABLE C-5C HAZARD INDICES AND THEORETICAL EXCESS LIFETIME CANCER RISKS INHALATION OF VOLATILE AND PARTICULATE EMISSIONS FORMER CARR CHINA MANUFACTURING FACILITY GRAFTON, WEST VIRGINIA VRP PROJECT # 20019

		INPUT PARAMETERS						
		FUG	ITIVE DUST INHALA	TION	INHALA	INHALATION - VOLATILE EMISSIONS		
		PEF	1.32E+09	m³/kg				
MEDIUM:	SOIL	EF	250	days/year	EF	250	days/year	
RECEPTOR:	FUTURE ADULT (AGE 6-16) RECREATOR	ED	10	years	ED	10	years	
		ET	4	hours/day	ET	4	hours/day	
		AT _{nc}	87600	hours	AT _{nc}	87600	hours	
		AT _c	613200	hours	AT _c	613200	hours	

		Fugitive Dust E	xposure			Volatile Emiss	ions Exposure	
	Inhalation EC Noncancer	Inhalation EC Cancer			Inhalation EC Noncancer	Inhalation EC Cancer		
Contaminants of Concern	(mg/m³)	(mg/m ³)	HQ	ELCR	(mg/m ³)	(mg/m ³)	HQ	ELCR
Benzo[a]anthracene	1.2E-11	1.7E-12	NA	3E-13	NA	NA	NA	NA
Benzo[a]pyrene	1.2E-11	1.6E-12	6E-06	3E-12	NA	NA	NA	NA
Benzo[b]fluoranthene	1.7E-11	2.5E-12	NA	4E-13	NA	NA	NA	NA
Dibenz(a,h)anthracene	6.0E-12	8.6E-13	NA	2E-12	NA	NA	NA	NA
Indeno[1,2,3-cd]pyrene	1.0E-11	1.5E-12	NA	3E-13	NA	NA	NA	NA
Cobalt	0.0E+00	0.0E+00	0E+00	0E+00	NA	NA	NA	NA
Manganese	0.0E+00	0.0E+00	0E+00	NA	NA	NA	NA	NA
Vanadium	0.0E+00	0.0E+00	0E+00	0E+00	NA	NA	NA	NA
Mercury	4.7E-10	6.8E-11	2E-06	NA	2.1E-05	3.1E-06	7E-02	NA
TOTAL			7E-06	6E-12			7E-02	0E+00

TABLE C-5D SUMMARY OF HAZARD INDICES AND THEORETICAL EXCESS LIFETIME CANCER RISKS FUTURE ADULT (AGE 6-16) RECREATOR FORMER CARR CHINA MANUFACTURING FACILITY GRAFTON, WEST VIRGINIA VRP PROJECT # 20019

	CONSTI	TUENT AND	PATHWAY SPEC	IFIC HQS		CONSTITU	JENT AND PA	THWAY SPECIF	IC CANCER	
Contaminants of Concern	Ingestion of Soil	Dermal Contact with Soil	Inhalation Particulates	Inhalation Volatiles (Soil)	TOTAL HAZARD INDEX	Ingestion of Soil	Dermal Contact with Soil	Inhalation Particulates	Inhalation Volatiles (Soil)	TOTAL CANCER RISK
Benzo[a]anthracene	NA	NA	NA	NA	0E+00	5E-09	3E-09	3E-13	NA	8E-09
Benzo[a]pyrene	4E-04	2E-04	6E-06	NA	6E-04	5E-08	3E-08	3E-12	NA	8E-08
Benzo[b]fluoranthene	NA	NA	NA	NA	0E+00	7E-09	4E-09	4E-13	NA	1E-08
Dibenz(a,h)anthracene	NA	NA	NA	NA	0E+00	3E-08	1E-08	2E-12	NA	4E-08
Indeno[1,2,3-cd]pyrene	NA	NA	NA	NA	0E+00	4E-09	2E-09	3E-13	NA	7E-09
Cobalt	0E+00	0E+00	0E+00	NA	0E+00	NA	NA	0E+00	NA	0E+00
Manganese	0E+00	0E+00	0E+00	NA	0E+00	NA	NA	NA	NA	0E+00
Vanadium	0E+00	0E+00	0E+00	NA	0E+00	NA	NA	0E+00	NA	0E+00
Mercury	3E-02	0E+00	2E-06	7E-02	1E-01	NA	NA	NA	NA	0E+00
TOTAL					1E-01					1E-07

TABLE C-6A CONSTITUENT-SPECIFIC FACTORS FORMER CARR CHINA MANUFACTURING FACILITY GRAFTON, WEST VIRGINIA VRP PROJECT # 20019

	il EPC	Soil VF	RBA		Gastrointestinal						
Contaminants of Concern (m	ng/kg)	(m ³ /kg)	(unitless) ⁽²⁾	Dermal ABS (unitless)	Absorption Efficiency (unitless)	Oral RfD (mg/kg-day)	Derm RfD (mg/kg-day)	Inhal. RfC (mg/m ³)	Oral CSF (mg/kg-day) ⁻¹	Derm CSF (mg/kg-day) ⁻¹	IUR (mg/m ³) ⁻¹
Benzo[a]anthracene C	0.14		1	0.13	1	NA	NA	NA	3.0E-01	3.0E-01	1.8E-01
Benzo[a]pyrene C	0.13		1	0.13	1	3.0E-04	3.0E-04	2.0E-06	3.0E+00	3.0E+00	1.8E+00
Benzo[b]fluoranthene 0	0.20		1	0.13	1	NA	NA	NA	3.0E-01	3.0E-01	1.8E-01
Dibenz(a,h)anthracene 0.	0.069		1	0.13	1	NA	NA	NA	3.0E+00	3.0E+00	1.8E+00
Indeno[1,2,3-cd]pyrene 0	0.12		1	0.13	1	NA	NA	NA	3.0E-01	3.0E-01	1.8E-01
Cobalt			1		1	3.0E-04	3.0E-04	6.0E-06	NA	NA	9.0E+00
Manganese			1		0.04	2.4E-02	9.6E-04	5.0E-05	NA	NA	NA
Vanadium			1		0.026	9.0E-03	2.3E-04	7.0E-06	NA	NA	8.3E+00
Mercury 5	5.46	2.9E+04	1		1	1.6E-04	1.6E-04	3.0E-04	NA	NA	NA

Notes:

Red italics indicate the CSF/IUR has been increased by a factor of 3 to account for mutagenic modes of action.

1 - The source of the constituent-specific information presented in this table is described in Sections 3 and 4 of the report text.

2 - Relative Bioavailability Factor (RBA) that accounts for the differences in the bioavailability of a contaminant between the medium of exposure (e.g., soil) and the media associated with the toxicity value (e.g., the arsenic RfD and CSF are derived from drinking water studies). Based on USEPA (2021a) RSL User's Guide.

NA - USEPA-derived toxicity values are not available for this particular exposure route or endpoint.

TABLE C-6B HAZARD INDICES AND THEORETICAL EXCESS LIFETIME CANCER RISKS INCIDENTAL INGESTION AND DERMAL CONTACT WITH SOIL FORMER CARR CHINA MANUFACTURING FACILITY GRAFTON, WEST VIRGINIA VRP PROJECT # 20019

				INPUT P	ARAMETERS		
			INGESTION			DERMAL CONTACT	
		CF	1E-06	kg/mg	CF	1E-06	kg/mg
MEDIUM:	SOIL	IR	200	mg/day	AF	0.2	mg/cm ² -event
RECEPTOR:	FUTURE CHILD (AGE 2-6) RECREATOR	EF	250	days/year	ABS	See Table E-5A	unitless
		ED	4	years	EF	250	days/year
		FI	1	unitless	ED	4	years
		BW	15	kg	EV	1	events/day
		AT _{nc}	1460	days	SA	2373	cm ²
		AT _c	25550	days	BW	15	kg
					AT _{nc}	1460	days
					AT _c	25550	days

		Ingestion Exp	osure		Direct Dermal Contact					
Contaminants of Concern	Ingestion Intake Noncancer (mg/kg-day)	Ingestion Intake Cancer (mg/kg-day)	HQ	ELCR	Absorbed Dose Noncancer (mg/kg-day)	Absorbed Dose Cancer (mg/kg-day)	HQ	ELCR		
Benzo[a]anthracene	1.3E-06	7.3E-08	NA	2E-08	3.9E-07	2.3E-08	NA	7E-09		
Benzo[a]pyrene	1.2E-06	6.9E-08	4E-03	2E-07	3.7E-07	2.1E-08	1E-03	6E-08		
Benzo[b]fluoranthene	1.8E-06	1.0E-07	NA	3E-08	5.6E-07	3.2E-08	NA	1E-08		
Dibenz(a,h)anthracene	6.3E-07	3.6E-08	NA	1E-07	1.9E-07	1.1E-08	NA	3E-08		
Indeno[1,2,3-cd]pyrene	1.1E-06	6.3E-08	NA	2E-08	3.4E-07	1.9E-08	NA	6E-09		
Cobalt	0.0E+00	0.0E+00	0E+00	NA	0.0E+00	0.0E+00	0E+00	NA		
Manganese	0.0E+00	0.0E+00	0E+00	NA	0.0E+00	0.0E+00	0E+00	NA		
Vanadium	0.0E+00	0.0E+00	0E+00	NA	0.0E+00	0.0E+00	0E+00	NA		
Mercury	5.0E-05	2.8E-06	3E-01	NA	0.0E+00	0.0E+00	0E+00	NA		
TOTAL			3E-01	4E-07			1E-03	1E-07		

TABLE C-6C HAZARD INDICES AND THEORETICAL EXCESS LIFETIME CANCER RISKS INHALATION OF VOLATILE AND PARTICULATE EMISSIONS FORMER CARR CHINA MANUFACTURING FACILITY GRAFTON, WEST VIRGINIA VRP PROJECT # 20019

			INPUT PARAMETERS								
		FUG	ITIVE DUST INHALA	TION	INHALATION - VOLATILE EMISSIONS						
		PEF	1.32E+09	m³/kg							
MEDIUM:	SOIL	EF	250	days/year	EF	250	days/year				
RECEPTOR: FUTURE CHILD (AGE 2-6) RECREATOR		ED	4	years	ED	4	years				
		ET	4	hours/day	ET	4	hours/day				
		AT _{nc}	35040	hours	AT _{nc}	35040	hours				
		AT _c	613200	hours	AT _c	613200	hours				

		Fugitive Dust E	xposure			Volatile Emiss	ions Exposure	
	Inhalation EC Noncancer	Inhalation EC Cancer			Inhalation EC Noncancer	Inhalation EC Cancer		
Contaminants of Concern	(mg/m³)	(mg/m ³)	HQ	ELCR	(mg/m ³)	(mg/m ³)	HQ	ELCR
Benzo[a]anthracene	1.2E-11	6.9E-13	NA	1E-13	NA	NA	NA	NA
Benzo[a]pyrene	1.2E-11	6.6E-13	6E-06	1E-12	NA	NA	NA	NA
Benzo[b]fluoranthene	1.7E-11	9.9E-13	NA	2E-13	NA	NA	NA	NA
Dibenz(a,h)anthracene	6.0E-12	3.4E-13	NA	6E-13	NA	NA	NA	NA
Indeno[1,2,3-cd]pyrene	1.0E-11	6.0E-13	NA	1E-13	NA	NA	NA	NA
Cobalt	0.0E+00	0.0E+00	0E+00	0E+00	NA	NA	NA	NA
Manganese	0.0E+00	0.0E+00	0E+00	NA	NA	NA	NA	NA
Vanadium	0.0E+00	0.0E+00	0E+00	0E+00	NA	NA	NA	NA
Mercury	4.7E-10	2.7E-11	2E-06	NA	2.1E-05	1.2E-06	7E-02	NA
TOTAL			7E-06	2E-12			7E-02	0E+00

TABLE C-6D SUMMARY OF HAZARD INDICES AND THEORETICAL EXCESS LIFETIME CANCER RISKS FUTURE CHILD (AGE 2-6) RECREATOR FORMER CARR CHINA MANUFACTURING FACILITY GRAFTON, WEST VIRGINIA VRP PROJECT # 20019

	CONSTI	TUENT AND	PATHWAY SPEC	IFIC HQS		CONSTITU	JENT AND PA	THWAY SPECIF	IC CANCER	
Contaminants of Concern	Ingestion of Soil	Dermal Contact with Soil	Inhalation Particulates	Inhalation Volatiles (Soil)	TOTAL HAZARD INDEX	Ingestion of Soil	Dermal Contact with Soil	Inhalation Particulates	Inhalation Volatiles (Soil)	TOTAL CANCER RISK
Benzo[a]anthracene	NA	NA	NA	NA	0E+00	2E-08	7E-09	1E-13	NA	3E-08
Benzo[a]pyrene	4E-03	1E-03	6E-06	NA	5E-03	2E-07	6E-08	1E-12	NA	3E-07
Benzo[b]fluoranthene	NA	NA	NA	NA	0E+00	3E-08	1E-08	2E-13	NA	4E-08
Dibenz(a,h)anthracene	NA	NA	NA	NA	0E+00	1E-07	3E-08	6E-13	NA	1E-07
Indeno[1,2,3-cd]pyrene	NA	NA	NA	NA	0E+00	2E-08	6E-09	1E-13	NA	2E-08
Cobalt	0E+00	0E+00	0E+00	NA	0E+00	NA	NA	0E+00	NA	0E+00
Manganese	0E+00	0E+00	0E+00	NA	0E+00	NA	NA	NA	NA	0E+00
Vanadium	0E+00	0E+00	0E+00	NA	0E+00	NA	NA	0E+00	NA	0E+00
Mercury	3E-01	0E+00	2E-06	7E-02	4E-01	NA	NA	NA	NA	0E+00
TOTAL					4E-01					5E-07

TABLE C-7A CONSTITUENT-SPECIFIC FACTORS FORMER CARR CHINA MANUFACTURING FACILITY GRAFTON, WEST VIRGINIA VRP PROJECT # 20019

					Constituent-Sp	ecific Informa	tion ⁽¹⁾				
Contaminants of Concern	Soil EPC (mg/kg)	Soil VF (m ³ /kg)	RBA (unitless) ⁽²⁾	Dermal ABS (unitless)	Gastrointestinal Absorption Efficiency (unitless)	Oral RfD (mg/kg-day)	Derm RfD (mg/kg-day)	Inhal. RfC (mg/m ³)	Oral CSF (mg/kg-day) ⁻¹	Derm CSF (mg/kg-day) ⁻¹	IUR (mg/m ³) ⁻¹
Benzo[a]anthracene	0.14		1	0.13	1	NA	NA	NA	1.0E+00	1.0E+00	6.0E-01
Benzo[a]pyrene	0.13		1	0.13	1	3.0E-04	3.0E-04	2.0E-06	1.0E+01	1.0E+01	6.0E+00
Benzo[b]fluoranthene	0.20		1	0.13	1	NA	NA	NA	1.0E+00	1.0E+00	6.0E-01
Dibenz(a,h)anthracene	0.069		1	0.13	1	NA	NA	NA	1.0E+01	1.0E+01	6.0E+00
Indeno[1,2,3-cd]pyrene	0.12		1	0.13	1	NA	NA	NA	1.0E+00	1.0E+00	6.0E-01
Cobalt			1		1	3.0E-04	3.0E-04	6.0E-06	NA	NA	9.0E+00
Manganese			1		0.04	2.4E-02	9.6E-04	5.0E-05	NA	NA	NA
Vanadium			1		0.026	9.0E-03	2.3E-04	7.0E-06	NA	NA	8.3E+00
Mercury	5.46	2.9E+04	1		1	1.6E-04	1.6E-04	3.0E-04	NA	NA	NA

Notes:

Red italics indicate the CSF/IUR has been increased by a factor of 10 to account for mutagenic modes of action.

1 - The source of the constituent-specific information presented in this table is described in Sections 3 and 4 of the report text.

2 - Relative Bioavailability Factor (RBA) that accounts for the differences in the bioavailability of a contaminant between the medium of exposure (e.g., soil) and the media associated with the toxicity value (e.g., the arsenic RfD and CSF are derived from drinking water studies). Based on USEPA (2021a) RSL User's Guide.

NA - USEPA-derived toxicity values are not available for this particular exposure route or endpoint.

TABLE C-7B HAZARD INDICES AND THEORETICAL EXCESS LIFETIME CANCER RISKS INCIDENTAL INGESTION AND DERMAL CONTACT WITH SOIL FORMER CARR CHINA MANUFACTURING FACILITY GRAFTON, WEST VIRGINIA VRP PROJECT # 20019

				INPUT P	ARAMETERS			
			INGESTION		DERMAL CONTACT			
		CF	1E-06	kg/mg	CF	1E-06	kg/mg	
MEDIUM:	SOIL	IR	200	mg/day	AF	0.2	mg/cm ² -event	
RECEPTOR:	FUTURE CHILD (AGE 0-2) RECREATOR	EF	250	days/year	ABS	See Table E-6A	unitless	
		ED	2	years	EF	250	days/year	
		FI	1	unitless	ED	2	years	
		BW	15	kg	EV	1	events/day	
		AT _{nc}	730	days	SA	2373	cm ²	
		AT _c	25550	days	BW	15	kg	
					AT _{nc}	730	days	
					AT _c	25550	days	

		Ingestion Exp	osure		Direct Dermal Contact					
Contaminants of Concern	Ingestion Intake Noncancer (mg/kg-day)	Ingestion Intake Cancer (mg/kg-day)	HQ	ELCR	Absorbed Dose Noncancer (mg/kg-day)	Absorbed Dose Cancer (mg/kg-day)	HQ	ELCR		
Benzo[a]anthracene	1.3E-06	3.7E-08	NA	4E-08	3.9E-07	1.1E-08	NA	1E-08		
Benzo[a]pyrene	1.2E-06	3.5E-08	4E-03	3E-07	3.7E-07	1.1E-08	1E-03	1E-07		
Benzo[b]fluoranthene	1.8E-06	5.2E-08	NA	5E-08	5.6E-07	1.6E-08	NA	2E-08		
Dibenz(a,h)anthracene	6.3E-07	1.8E-08	NA	2E-07	1.9E-07	5.6E-09	NA	6E-08		
Indeno[1,2,3-cd]pyrene	1.1E-06	3.2E-08	NA	3E-08	3.4E-07	9.7E-09	NA	1E-08		
Cobalt	0.0E+00	0.0E+00	0E+00	NA	0.0E+00	0.0E+00	0E+00	NA		
Manganese	0.0E+00	0.0E+00	0E+00	NA	0.0E+00	0.0E+00	0E+00	NA		
Vanadium	0.0E+00	0.0E+00	0E+00	NA	0.0E+00	0.0E+00	0E+00	NA		
Mercury	5.0E-05	1.4E-06	3E-01	NA	0.0E+00	0.0E+00	0E+00	NA		
TOTAL			3E-01	6E-07			1E-03	2E-07		

TABLE C-7C HAZARD INDICES AND THEORETICAL EXCESS LIFETIME CANCER RISKS INHALATION OF VOLATILE AND PARTICULATE EMISSIONS FORMER CARR CHINA MANUFACTURING FACILITY GRAFTON, WEST VIRGINIA VRP PROJECT # 20019

				INPUT PA	RAMETERS			
		FUG	ITIVE DUST INHALA	TION	INHALATION - VOLATILE EMISSIONS			
		PEF	1.32E+09	m³/kg				
MEDIUM:	SOIL	EF	250	days/year	EF	250	days/year	
RECEPTOR: FUTURE CHILD (AGE 0-2) RECREAT	FUTURE CHILD (AGE 0-2) RECREATOR	ED	2	years	ED	2	years	
		ET	4	hours/day	ET	4	hours/day	
		AT _{nc}	17520	hours	AT _{nc}	17520	hours	
		AT _c	613200	hours	AT _c	613200	hours	

		Fugitive Dust E	xposure			Volatile Emiss	ions Exposure	
	Inhalation EC Noncancer	Inhalation EC Cancer			Inhalation EC Noncancer	Inhalation EC Cancer		
Contaminants of Concern	(mg/m³)	(mg/m ³)	HQ	ELCR	(mg/m ³)	(mg/m ³)	HQ	ELCR
Benzo[a]anthracene	1.2E-11	3.5E-13	NA	2E-13	NA	NA	NA	NA
Benzo[a]pyrene	1.2E-11	3.3E-13	6E-06	2E-12	NA	NA	NA	NA
Benzo[b]fluoranthene	1.7E-11	5.0E-13	NA	3E-13	NA	NA	NA	NA
Dibenz(a,h)anthracene	6.0E-12	1.7E-13	NA	1E-12	NA	NA	NA	NA
Indeno[1,2,3-cd]pyrene	1.0E-11	3.0E-13	NA	2E-13	NA	NA	NA	NA
Cobalt	0.0E+00	0.0E+00	0E+00	0E+00	NA	NA	NA	NA
Manganese	0.0E+00	0.0E+00	0E+00	NA	NA	NA	NA	NA
Vanadium	0.0E+00	0.0E+00	0E+00	0E+00	NA	NA	NA	NA
Mercury	4.7E-10	1.4E-11	2E-06	NA	2.1E-05	6.1E-07	7E-02	NA
TOTAL			7E-06	4E-12			7E-02	0E+00

TABLE C-7D SUMMARY OF HAZARD INDICES AND THEORETICAL EXCESS LIFETIME CANCER RISKS FUTURE CHILD (AGE 0-2) RECREATOR FORMER CARR CHINA MANUFACTURING FACILITY GRAFTON, WEST VIRGINIA VRP PROJECT # 20019

	CONSTI	TUENT AND	PATHWAY SPEC	IFIC HQS		CONSTITU	JENT AND PA	THWAY SPECIF	IC CANCER	
Contaminants of Concern	Ingestion of Soil	Dermal Contact with Soil	Inhalation Particulates	Inhalation Volatiles (Soil)	TOTAL HAZARD INDEX	Ingestion of Soil	Dermal Contact with Soil	Inhalation Particulates	Inhalation Volatiles (Soil)	TOTAL CANCER RISK
Benzo[a]anthracene	NA	NA	NA	NA	0E+00	4E-08	1E-08	2E-13	NA	5E-08
Benzo[a]pyrene	4E-03	1E-03	6E-06	NA	5E-03	3E-07	1E-07	2E-12	NA	5E-07
Benzo[b]fluoranthene	NA	NA	NA	NA	0E+00	5E-08	2E-08	3E-13	NA	7E-08
Dibenz(a,h)anthracene	NA	NA	NA	NA	0E+00	2E-07	6E-08	1E-12	NA	2E-07
Indeno[1,2,3-cd]pyrene	NA	NA	NA	NA	0E+00	3E-08	1E-08	2E-13	NA	4E-08
Cobalt	0E+00	0E+00	0E+00	NA	0E+00	NA	NA	0E+00	NA	0E+00
Manganese	0E+00	0E+00	0E+00	NA	0E+00	NA	NA	NA	NA	0E+00
Vanadium	0E+00	0E+00	0E+00	NA	0E+00	NA	NA	0E+00	NA	0E+00
Mercury	3E-01	0E+00	2E-06	7E-02	4E-01	NA	NA	NA	NA	0E+00
TOTAL					4E-01					8E-07

APPENDIX D

WVDEP CAP AND COVER GUIDANCE

APPENDIX F

F.2.1 Soil Covers

A soil cover is typically the least expensive and simplest method of preventing direct contact exposure to underlying contaminated media. At a minimum, a 1-foot thickness of clean soil must be used to prevent direct contact. Soil covers must also be vegetated and maintained to prevent growth of deep-rooted vegetation, erosion, and deterioration over time. Therefore, the upper 6 inches of material must consist of soil that is capable of supporting vegetation, and an appropriate seeding mixture must be provided to establish a healthy stand of grass. The lower layer should not be over-compacted such that the water-retaining capability of the subsoil is significantly reduced.

The slope of a soil cover must not be steeper than 2:1 (H:V), but preferably no steeper than 3:1 to minimize the potential for slope instability. Soil covers placed on relatively steep slopes must be designed with adequate erosion control measures to prevent damage to the cover. This may include erosion control mats (jute, straw, coconut fiber, etc.) or may require rigid armor products (e.g., Armor Flex) on long or particularly steep slopes with a high potential for damage from run-off. Conversely, soil covers must be graded to be free-draining and prevent ponding. Therefore, a minimum slope of 5% should be maintained for vegetated soil surfaces. Figure F-1 depicts a default soil cover that meets the minimum performance standards.

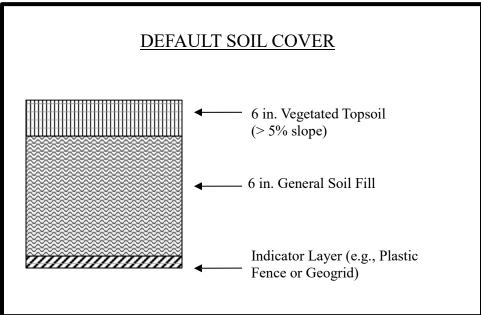


Figure F-1: Default Soil Cover

The LRS must ensure that all material used in cover and cap systems does not contain contaminants from the site or an off-site source. Borrow material should always be obtained from undeveloped areas that have not been previously used for commercial, agricultural, or industrial purposes. If it is necessary to use material from an area that may contain contamination, the materials must be tested for potential contaminants prior to being used. Analytical parameters will depend on the soil source and previous use, but will likely include VOCs, SVOCs, and RCRA 8 metals, at a minimum. The LRS must consult with the OER Project Manager to determine the number of samples and analytical parameters necessary to properly evaluate potentially impacted materials, and this information must be included in the RAWP. All materials used for covers must meet De Minimis Standards appropriate for the site use or natural background levels.

F.2.2 Other Unconsolidated Covers

As an alternative to using soil to prevent direct contact with contaminated media, other materials may be used to partially or completely replace the soil. For example, a layer of aggregate (crushed stone or gravel) may be specified as the surface layer where limited vehicle traffic is anticipated to occur on the cover. Another possible scenario might be the use of rubber chips, wood chips, bark chips, or other organic mulch in situations where the final use includes landscaping, such as in a park or commercial development. Where alternate surface materials are proposed, vegetation is not required. However, a plan for inspection and maintenance will be required to ensure that the surface materials are not damaged by pedestrian or vehicular traffic or erosion. In each case, it is the responsibility of the LRS to demonstrate that the proposed cover material will prevent direct contact with the underlying contaminants and will continue to function effectively in the post-remediation scenario.

Where materials of differing particle sizes are proposed to be placed in layers, an appropriately designed separation layer (e.g., geotextile fabric) must be installed to prevent materials of differing particle size from mixing or disintegrating into each other. In all cases where unconsolidated materials are proposed to prevent direct contact exposure, the thickness of the material must be adequate to reliably prevent exposure and to minimize long-term maintenance. If a thinner direct contact exposure cover is necessary or desired, the LRS must propose another material type (e.g., pavement cover). Covers comprised of unconsolidated materials must be graded to be free-draining. A minimum slope of 2% should be maintained for gravel surfaces. Minimum slope for other surfaces should be designed on a case-by-case basis. Figure F-2 depicts an alternate unconsolidated cover that meets the minimum performance standards.